On g-differential graded algebras and
N-complexes

Daniel Larsson and Sergei D. Silvestrov

Abstract We generalize a result of V. Abramov apdifferential graded algebras
and show in explicit terms its relation tdd-complexes.

1 Introduction

We begin by summarizing Abramov’s result and ours for easygarison.

1.1 Abramov's main result

In Abramov’s setting (see [1]) we have Zgraded associativ€-algebraD =
Dnez Dn With unity. Fundamental to his paper is the (gradg@pmmutatorg € C,
defined by

(a,b)q := ab— qied¥ dedb)

ba, for ae€Dgega, and b€ Dgeyp),
and where de@) is the graded degree-function. Notice that this is undefioed
non-homogenous elements and that this definition uses manethe fact that is
a group: it uses the fact thatis a ring!

It is easy to see that
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(a,bc)q = (a,b)qc + qiedD 4D c)q,

that is, the mapping4db) := (x,-)q(b) = (a,b)q is ag-differential onD. There is
however one thing that should be stressedisdnly linear on homogeneous com-
ponents! This is due to the involvement of the faaif9@ d€db) and the fact that
deq-) is not linear.

Abramov’s main result can now be formulated as

Theorem 1 (Abramov [1]). Suppose D= @,z Dn and that N> 2 is given such
that q is a primitive N'-root of unity. Assume further that@D; and that & =
ulp € Do, for ue C. Thend)(b) = Oforallb € A.

1.2 Our main result

Let k be a commutative, associative ring with unity ahdn associativ&-algebra
with unity. Furthermore, leG be a subset of and formk[G|, thek-algebra generated
by G. Take a multiplicative map with domainG, and if not already linear, extend
it k-linearly onk[G] by a(rg+r'd’) :==ro(g) +r'o(d). We assume thatr(g) =
¢(a,g)g for a fixedac Aand a magp: {a} x G — Z(A), where ZA) is the center
of A.

PutA(b) := [a,-)(b) = [a,b) = ab— g(b)a, for b € k[G]. This is ac-derivation
onk[G]. Compare this with Abramov'g-differential d, = (a,-)q. Assume also that
aN € Z(A) for someN > 2.

Theorem 2.1f a € k|G] and@(a, a) is a primitive N"-root of unity andp(a, b)N = 1
for all b € k[G], thenAN(b) = O for all b € K[G].

1.3 Comparison

First notice that ifG is a generating set & overk thenk[G] = A. This is also true
if AisZ-graded (for instance) and = U,c7An, the set of homogenous elements of
A, since anya € Ais a finite sum of homogenous elements.

In our approach we avoid the grading but we retain Abramog&ult in the
graded case. To see this assume that our algeis&-graded and thdt = C. By
the above argumert= k[G] wheregG is the subset of of homogeneous elements.
For example, the map can now be defined as(g) = ¢(a,g)g = q?e4@ ded9)g —
q?ed9g where we have € A; and ¢(a,g) = €943 9ed9), Obviously this map is
only linear on each homogeneous component and so has to beitgxpxtended.
From this we see thag(a,a) = qandg(a,b) = %9, for b € G. Assuming further
thata = ul we are exactly in Abramov’s case.
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2 Set-up

Let A be ak-algebra andN anA-bimodule. Amodule derivation on As ak-linear
map 2 : A — N satisfyingZ(ab) = Z(a)b+aZ(b) for a,b € A. Furthermore, let
I andM be left A-modules (in particulak-modules). Thern is said to act orM
if there is ak-linear mapy : I’ ®«M — M. We write y.x for u(y®gXx). A general
derivationon (A, I ,M) is a quadrupléo, 1,A, 2) [4] where

e 0A: —TI,and
e T,2:M—M

are allk-linear maps such that

P(yX) = A(Y).T(X) + 0(y). Z(x). (1)

Definition 1. If ' =M =AandZ = A, then a general derivatidw, 7,A, 2) is said
to be a(o, 1)-derivationon A and wherr = idy it is usually called ar-derivation
Here we simply write this a4.

Assume thaf is ak-algebra equipped with kendomorphisno. Define the oper-
ator[a,-) : A— A, foreacha € A, by:

A(b) :=[a,)(b) := ab— o(b)a, 2)
i.e.,A:=]a,-). ClearlyA is k-linear sinceo is. It is easy to see that
[a,bc) = [a,b)c+ a(b)[a,c).

In other words/a, -) is ao-twisted derivation for each € A and algebra endomor-

phismao. In fact, [a, -) is calledo-innerin analogy with the classical case= ida.
From now on we fixa € k[G] and assume that given byo(b) := ¢(a,b)bis a

k-algebra morphism ok[G] with ¢ : {a} x K[G] — Z(K[G]). Forb, ¢ € k[G] we have

0= 0a(be) — 0a(b) 0a(c) = (9(a,bC) — @(a, b)@(a,c) e

and so ifbcis not a (right) zero divisop(a, bc) = ¢(a,b)@(a,c).

We introduce the notatiop'”) (a,b) := @(a, ¢(a, ..., ¢(a,b))) (¢ appearances of
). For instancep® (a,b) = @(a, @(a, @(a,b))). Also, it is convenient to interpret
¢ (a,b) asb.

Lemma 1. The following identities hold for b k[G]:
0] O'a(QD([) (a7 b)) = (p(l’,+1) (a’ b) (p(l’,) (a’ b)'
. l
(i) o4(b) = Mi_o @ V(ab)0).
Proof. Identity (i) follows immediately from definition. The seadrne is proved

by induction where the case= 1 is a(b) = ga(b) = @(a,b)b which is (ii) for
¢ =1. Assume now that (ii) holds far. Then
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0L (b) = Ga(aL(b)) = Ga(TT|_o @ D (a,b))) = Mf_ooa(@~ (b)) =
= M=o @ V@b Vol Dia b)) = idp+t @ n) (1),

where we have used identity (i) and after re-arranging tioelpet, the Pascal iden-
tity (}) + ;1) = ({71)- (Notice that we used that")(a,b) € Z(A) and thatoy is
multlpl|cat|ve) a

Lemma 2. For a € k|G] we havep(a,a)Aoc0 = 0o A.
Proof. This follows from the following simple computation:

ooA(b) = )
= ¢(a,a)ao(b) —o(a(b))¢(a,a)a= ¢(a,a)(ac(b) — o(o(b))a) =

This completes the proof.O0

Compare this with [2] wherein we have the reversed orderAe o = dog oA, for
0 € A(in [2] Awas supposed to be commutative as well). In fact, adoptimgtter
from the above Lemma in [2] leads to same result and so we havarmection to
the theory developed in [2].

2.1 Main result

Assume thak is an integral domain and |&f denote the maximal subalgebra of
Z(K[G]) such thatoy|s = ida and such thak is an integral domain as well. From
now on (unless stated otherwise) we supppsea} x k|G] — =. This implies that

if se X theng(a,s) = 1since, on the one hand,(s) = s, and on the othega,(s) =
@(a,s)s. Also, by constructioro, satisfiesoa(sh) = soa(b) for s 2. This is all
sufficient to haved (0a(b)) = A(@(a,b)b) = ¢(a,b)A(b), for instance. In general
A(sb) =sA(b) forse 2.

Leta,b € k|G] and pute; := @(a,a) ande, := @(a,b). Formally, forq e Z* :=
5\ {0}, we denote by{n}q € = the polynomiall +q+q?>+---+q" 1 forne
Nt :=NU{0}, defining{0}4 := 0. Note that we do not exclude the possibility of
{0}q=1+q+0?+---+q~! being zero for somé € N*. Define the tj-binomial
coefficient” as the (unique) solution to thg-Pascal recurrence relation”:

n+1) _ nj<n> ( n )
(j+1>q AEVVARVEEYA ©

orOeitherifj+1<0orj+1>n+l1andlifj+1=00rj+1=n+1.Itcan
be proven [3] thai('j‘)q is a polynomial inq for all n and j. Also, in analogy with
the classical case, it can be shown that if neither of thelweebproducts in the

denominator is zero, we ha\@) m
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An elementg € 2* is ann-th root of unity if " = 1 and a primitiven-th root of
unity if g" = 1, and{¢}q # 0 for £ < n. SinceX is a domaing being am-th root of
unity, i.e.,q"— 1= 0, is equivalent to

(L+a++--+ad" (-1 = {njq(a—1)=0.

So,ifq#1, {n}q=0
Proposition 1. For a,b € k|G] we have
¢ il (O gipg
b) = Z (—1))ea * g . ) a 'ba. 4)
j=0 J €a

Proof. The Proposition is verified fof = 1,2, 3 without difficulty. Assume that (4)
is true for/. Then

AL (b) = A(A (b)) = S (_1>Js§?>gg<f> A(a'~ibal). (5)

We have

A(abal) = [a,a’ Ibal) = &’ i*1bal — g4(a)! | oa(b)0a(a)la=
= a'~1*+1pal — glepa’Tpaltl.

This means that

£ (T . .
A )= 5 (-1)len T g (1) o 1tibal +

r b J

= &a

¢
/ o
+ £‘+1< ) al~ipaltl,
J% ° J €a

Write the first sum as

G-y Ly ) )
(—1)Jsa_2_sg<.> a1 tlpal +a =5, +a b
Ea

M-

J

and the second as
-1 Co =D, ¢ _— ((t+1)
Z)(—l)J+1sat_2_+ Sngl( ) aé—JbaHl ( 1)“18_2_ é+1b (+1
J= &a
:SZ+(_ )Z+1£ <2 L f+lb f+l.

TheSi-term can be written as
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-1 . ii+1)

i S
_ 1)+ 8—2—£J+1<_ ) a[—jbaj+l.
J;( ) 2 ),

AddingS1 andS, we get:

-1 i+ /oy =0, /¢ o
Sl"’SZZ 1 J+1€J+l gT ( > +£T <> a[*]ba]“rl.
JZO( ) b ( J+1 6 a j Ea)

Note that@ = w — j so the parentheses becomes

i(i4+1) ¢ 7y
& 2 ([ . e1T) ).
2 ((J+1>ga+ 2 <J>ga)

Using (3) this is the same arg (fﬁ) . ThenS; + S, add up to

1+1/,

_i i '“ = '<€+1> A H1-ipgl
= I /e, '

Putting everything together yields

/-1 i
Z)(—l)j“e;“ )eé“(“l) a~Ibal*l =
J:

((t+1)
a[+1b+ Sl+52+(_ )[+1£a erlb erl

(+1 1
= ZD j&:“z ) (“—1) a1 ipal
I e,

and the proof is complete.

Supposee, satisfies{n}e, =1+ & +&2+---+ &l 1 =0, thatis,1 & € > C
Z(K[G]) is a primitiven-th root of unity. Ther‘( )S = 0 for j # 0,n. Hence

n(n—1)

A"(b)=a"b+(—1)"e; 2 glba.
Assuming tha" andb commute (ifa" € Z(k[G]), for instance), we get
A"(b)=(1+(—1)"ex 2 g)ab.

From this follows that

if nis odd, and
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if nis even. However, sincg, is a primitiven-th root of unityeZ = —1 and so both
these cases are the same.

Corollary 1. If, in addition to the above assumptiorg§, = 1 thenA"(b) = 0, for
all b € K[G].

3 GeneralizedN-complexes and Examples

A generalized N-compleXN > 0, is a sequence of objec{€ }icz, in an abelian
categoryA together with a sequence of morphismsedHom(C;,Ci1) for some
(fixed) p € Z and such that

dN = di+(Nil>pOdi+(N72)pO---Odi+p0di == O C| —>C|+Np

The casé\ = O is interpreted as there being no vanishing condition airathe dif-
ferential and\N = 1 means &= 0. We write a generalizel-complex as(Cn,dn)Eé%.
If p=1 we get the class dfl-complexes and if in additioN = 2 we get the or-
dinary complexes from ordinary homological algebra. Ofrseuve could have de-
fined d € Hom(G;,Ci,., ) for some family ofp;’s but such a definition would drown
in indices so we refrain from explicitly stating it.

In this paper we are considering only the case wA&fod(k), the abelian cat-
egory ofk-(bi-)modules. Also we are mainly concerned with the specése of

graded algebras. As a reminder we recall the case of diffeteyraded algebras.

Example 1Let D = @,z Dn be a graded-algebra. Then a differential graded
structure orD is ak-linear map d Dy — Dy41 such that the graded Leibniz rule,
d(ab) = d(a)b+ (—1)%9¥ad(b), holds for homogeneousb € D. This becomes
an ordinary 2-complex wit, = Dy,

Note that d is actually a-derivation onD with o(a,) = (—1)"ap, for a, € Dy,
extendedk-linearly on G= UpczDn, and we haveD = K[G]. In fact, o is lin-
ear on each graded component an@,bm) can be defined (unambiguously) as
(—1)™Ma, by, for a, € Dy andby, € Dy, henceo (anby) = o(an)o(bm), so this is
well-defined.

Example 2Generalizing the above example as follows leads tocHukfferential
graded algebras considered by Abramov [1] among many othmetsed, let as be-
fore D = @,z Dn and takeqg € k, with the propertygN = 1 (usually it is assumed
thatk = C), and let d be &-linear map orD such that dab) = d(a)b+ qe9@ad(b).
This is also ao-derivation onD with o(a,) = q"a, for a, € Dy extendedk-linearly
from G = UnezDn to D = K[G]. Clearly the above example is a special case of this
one wherg is the second root of unity= —1.
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3.1 An elaborated example

Here we assume tha is the k-algebra of Laurent polynomials ovéri.e., A=
K[t,t~1]. This is aZ-gradedk-algebra generated ovek by {1,t,t =1} and so we
could either takeG = Upczkt" = UnczAn, the homogeneous elements, Gr=
{1,t,t~1} and we would still haveA = k]t,t 1] = k[G]. For simplicity we choose
G={1tt1}.

The most generab on G is one on the forno(t) = git ando(t™1) = ut2
but this choice have to respett! =t~1t = 1 so if o is multiplicative we have to
conditiongp = qzl =:gands, = —s; =: s. We then haver(t) = qt° = ¢(a,t)t so
o(a,t) = qt>L. From this followsg(a,t)@(a,t™1) =1, i.e.,, p(at) "t = g(a,t™?)
by the uniqueness of inverses. Exteado A by the obviouso (uit" + ust™) :=
upo(t") 4+ upa(t™) for uy,up € k, n,me Z.

Takea € A and formA := a(ida — o). We know thatA is ao-derivation sinceA
is commutative. Applying) to a homogeneous compondgtwe find

A(ut") = a(ida — o) (ut") = au(t" — @(a,t)"t") = au(1— @(a,t)"t".

The degree oA\ is therefore in general undefined sintand ¢(a,t)" will belong
to different graded components; indeeda,t)" ¢ Ag ~ k in general. However, if
@o(a,t) € Agtheng(a,t)" € Ag for all n € Z sinceAy is a subalgebra. Accordingly, we
assume from now on thai(a,t) € k. ThenA(ut") = au(1— ¢@(a,t)")t" € Ay, gega)
with u € k.

This means that we have a generalized comphexA)
Anidega), foreachae A.

From Proposition 1 we have

0,deg(a)
nez

, whereA : A, —

d ; (=)

2'b)= 3 (-1)g(aa)"
2,

o(a,b)’ (6) a'b.
1/ paa)

Supposep(a,a)’ = 1andp(a,a)™ # 1form< ¢, i.e.,@(a,a) is a primitive/M-root
of unity and suppose(a,b)’ = 1. Then we are in the situation of Corollary 1:

Al(b)=0, forall be A=Kkt

and so we have constructed ldrcomplex.
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Lin fact, if kis a field, therA is actually even graded fieldin the sense that each homogeneous
element is a unit. More to the point in this caseajfe A, then there is an elemeat , € A_, such
thata,a n =a nan=1.
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