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Abstract

This paper is devoted to an extension of Burchnall-Chaundy theory on the inter-
play between algebraic geometry and commuting differential operators to the case of
q-difference operators.

1 Introduction

One of the major achievements in the theory of non-linear differential equations is the
algebraic-geometric method, relating integrable non-linear differential equations and their
solutions to properties of algebraic curves and algebraic manifolds. It was originally de-
veloped in 1970’s in connection to the inverse scattering problem [18, 19, 20, 21, 22, 23,
25, 26, 27, 28, 29, 30, 31], but since then it has become an area of research on its own,
greatly influencing developments in algebraic geometry, non-linear equations and algebra,
as well as playing an increasingly important role in many applications. This interplay be-
tween algebraic geometry and integrable non-linear equations is based on the observation
that many of these equations can be formulated as conditions on the coefficients of some
differential operators equivalent to the property that these operators commute. Thus the
main problem becomes to describe, as detailed as possible, commuting differential oper-
ators. The solution of this problem is where algebraic geometry enters the scene. The
main result responsible for this connection was obtained by Burchnall and Chaundy in
the beginning of the 1920’s and further explored by them in a series of papers over the
following decade [2, 3, 4]. This key result states that commuting differential operators sat-
isfy an equation for a certain algebraic curve, which can be explicitly calculated for each
pair of commuting operators. This correspondence has also been discretized to classical
difference operators [22, 25, 26]. However not so much has been done in this direction
for q-difference operators, in spite of their widespread applications and long and colorful
history. Only recently have some results appeared in the direction of integrable non-linear
q-difference equations [1, 6, 7, 8, 9, 10, 17]. In [11], the key Burchnall-Chaundy type the-
orem for q-difference equations was obtained, where it was stated as a corollary to a more
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general theorem of this type for q-deformed Heisenberg algebras. The proof in [11] is an
existence argument, which can be used successfully for an algorithmic implementation for
computing the corresponding algebraic curves. However, since it does not give any specific
information on the structure or properties of such algebraic curves, it is desirable to have
a way of describing such algebraic curves by some explicit formulae. In this article we
make a step in that direction by offering a number of interesting examples, indicating the
method of proof in the general case [24].

Jackson q-derivative and q-difference operators

This section is devoted to ordinary q-difference operators and q-difference equations, that
is to q-difference operators and q-difference equations in spaces of functions of a single
variable.

In 1908 F. H. Jackson [12, 13, 14, 15, 16] reintroduced and started a systematic study
of the q-difference operator

(Dqϕ) (x) =
ϕ(x) − ϕ(qx)

(1 − q)x
, q �= 1, (1.1)

which is now sometimes referred to as Euler-Jackson or Jackson q-difference operator
or simply the q-derivative. This operator may be applied without any problems to any
function not containing x = 0 in the domain of definition. By definition, the limit as q
approaches 1 is the ordinary derivative, that is

lim
q→1

(Dqϕ) (x) =
dϕ

dx
(x), (1.2)

if ϕ is differentiable at x. The Dq-constants or multiplicatively q-periodic functions are
solutions of the functional equation

k(qx) = k(x) or Dqk(x) = 0. (1.3)

These functions play in the theory of q-difference equations the role of the arbitrary con-
stants of the differential equations.

The formulas for the q-difference of a sum of functions and of a product by a constant
are [5]:

Dq (u(x) + v(x)) = Dqu(x) + Dqv(x), (1.4)

Dq (cu(x)) = cDqu(x). (1.5)

So the operator Dq is linear when it acts on a linear space of functions, and the general
theory of linear operators developed within linear algebra, functional analysis, operator
theory and operator algebras can be applied.

The formulas for the q-difference of a product and a quotient of functions are [5]:

Dq (f(x)g(x)) = f(qx)Dqg(x) + Dqf(x)g(x), (1.6)

Dq

(
f(x)
g(x)

)
=

g(x)Dqf(x) − f(x)Dqg(x)
g(qx)g(x)

. (1.7)
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The usual Leibniz rule for q-derivative is recovered from (1.6) when q tends to 1.
The q-analogue of the chain rule is more complicated since it involves q-derivatives for

different values of q depending on the composed functions. For example if g(x) is the
function g(x) : x �→ cxk and qk �= 1, then

Dq(f ◦ g)(x) =
(
Dqk(f)

)
(g(x))Dq(g)(x). (1.8)

The chain rule for general g(x) and f(x) is

Dq(f ◦ g)(x) =
(
D g(qx)

g(x)

(f)
)

(g(x))Dq(g)(x) (1.9)

If g(x) and f(x) are interpreted not as formal expressions but as functions, then this
formula is true for all x �= 0 such that g(x) �= 0 and g(qx) �= g(x), with other points x
requiring separate consideration. The general chain rule (1.9) is easily proved as follows:

Dq(f ◦ g)(x) =
f(g(x)) − f(g(qx))

(1 − q)x
=

=
f(g(x)) − f(g(qx)

g(x) g(x))

(1 − g(qx)
g(x) )g(x)

(1 − g(qx)
g(x) )g(x)

(1 − q)x
=

(
D g(qx)

g(x)

(f)
)

(g(x))Dq(g)(x).

Strangely enough, we have not been able to find this formula and the above easy proof
explicitly anywhere in the literature on q-analysis.

The general Leibniz rule for action of powers of the q-derivative operator on a product
of functions is

Dn
q (fg)(x) =

n∑
k=0

(
n

k

)
q

Dk
q (f)(xqn−k)Dn−k

q (g)(x) (1.10)

Using the multiplicative q-shift operator Tq : f(x) �→ f(qx) the Leibniz rules (1.6) and
(1.10) can be written as follows:

Dq (f(x)g(x)) = Tqf(x)Dqg(x) + Dqf(x)g(x), (1.11)

Dn
q (fg)(x) =

n∑
k=0

(
n

k

)
q

Tn−k
q Dk

q (f)(x)Dn−k
q (g)(x). (1.12)

Here we have used the q-binomial coefficients defined by
(
n

k

)
q

=
{n}q!

{k}q!{n− k}q!
(1.13)

for k = 0, 1, . . . , n, where

{n}q =
n∑

k=1

qk−1, {0}q = 0, (1.14)

{n}q! =
n∏

k=1

{k}q, {0}q! = 1. (1.15)
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are the q-analogues of the natural numbers and the factorial function. The q-binomial
coefficients

(
n
k

)
q

are polynomials in q with integer coefficients. If q = 1, then {n}q = n. If

q �= 1, then {n}q = qn−1
q−1 .

It can be easily checked from the definition of the q-derivative that the action of Dq on
the functions xs is given by the q-analogue of the usual rule

Dq(xs) = {s}qx
s−1.

The linear q-difference operators, which use Jackson q-derivative operator Dq as the
generator, are sums of the form

P =
n∑

j=0

pjD
j
q,

where the coefficients pi are some functions, which we assume in this article for simplicity
of exposition to be polynomials in x.

2 Burchnall-Chaundy type theorem for q-difference opera-
tors and q-deformed Heisenberg algebras

The q-deformed Heisenberg algebra for q ∈ C \ {0} is a C-algebra Hq with unit element I
and generators A and B satisfying defining q-deformed Heisenberg canonical commutation
relation

AB − qBA = I. (2.1)

The algebra can be constructed as the quotient Hq = C〈A,B〉/(AB− qBA− I) of the free
algebra C〈A,B〉 by the two-sided ideal generated by AB − qBA− I.

The q-deformed Heisenberg algebra is fundamental for q-difference equations, due to
the fact that the Jackson q-difference operator Dq and the operator of multiplication
Mx : f(x) �→ xf(x) satisfy the q-deformed Heisenberg canonical commutation relation

DqMx − qMxDq = I. (2.2)

Indeed,

(DqMx − qMxDq)(f)(x) =
xf(x) − qxf(qx)

x(1 − q)
− qxf(x) − qxf(qx)

x(1 − q)
=

xf(x) − qxf(x)
x(1 − q)

= f(x) = (If)(x)

In the terminology of representation theory this means that the operators Dq and Mx are
representatives of generators in the representation of the q-deformed Heisenberg algebra
Hq. Any pair, or more generally, a set of linear operators satisfying some commutation
relations is also called a representation of these commutation relations. So, the pair
(Dq,Mx) is a representation of the q-deformed Heisenberg commutation relation (2.1).
Any algebraic identity which holds in Hq results in the corresponding identity for the
operators Dq and Mx, thus having an impact on the related q-difference equations.
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Using the defining commutation relations (2.1) it can be checked that

B2A2 = q−1BA(BA− I)

B3A3 = q−3BA(BA− I)(BA− (q + 1)I).

An inductive argument gives

BnAn = q−
n(n−1)

2

n−1∏
j=0

(
BA− (

j−1∑
k=0

qk)I
)

= q−
n(n−1)

2

n−1∏
j=0

(
BA− {j}qI

)
, (2.3)

Using this we see, for example, that

B4A4 = q−6BA(BA− I)(BA− (q + 1)I)(BA− (q2 + q + 1)I) =

= q−6BA(BA− {1}qI)(BA− {2}qI)(BA− {3}qI).

Using the equality (2.3) we get the following very useful fact.

Lemma 1. In the q-deformed Heisenberg algebra Hq, all monomials and linear combina-
tions of monomials of the form BnAn commute with each other.

The following theorem is a generalization of the Burchnall-Chaundy theorem to q-
deformed Heisenberg algebras. The general algebraic way this result is stated is important
because then the property becomes universal in its nature, being consequently applicable
not only to q-difference operators arising from the specific representation (Dq,Mx), but
also to any other class of operators associated to any other representation of the q-deformed
Heisenberg canonical commutation relation.

Theorem 1. (L. Hellström, S. D. Silvestrov [11]) If P,Q ∈ Hq commute, that is satisfy
PQ = QP , then there exists a nonzero polynomial F in two commutative variables with
coefficients from the center of Hq such that F (P,Q) = 0 in Hq.

The center of Hq is the set of elements in Hq commuting with any element in Hq. If q is
not a root of unity or if q = 1, then the center of Hq is trivial, that is consisting only from
the elements of the form λI, λ ∈ C. So in this case, to any pair of commuting elements
in Hq, one can associate an algebraic curve in C

2 given by the corresponding polynomial
with complex coefficients, the existence of which is stated in Theorem 1. In the case when
q is a root of unity but not 1, the center of Hq is the subalgebra generated by Ap and Bp

where p is the smallest positive integer such that qp = 1. The coefficients in the polynomial
from the theorem are some elements of this commutative subalgebra. They might be the
elements of the form λI, and in this case we again would get an ordinary algebraic curve.
But if they are not, then we get an algebraic curve with coefficients, which are not scalars
but polynomials in Ap and Bp. However, in a particular representation we might still
get ordinary algebraic curves as some or all central elements might become, for example,
scalar multiples of the identity operator.

The proof of Theorem 1 given in [11] is an existence proof based on dimension growth
arguments. Though it can be used for construction of an algorithm for computing the
annihilating polynomials for the given pair of commuting elements in Hq, it does not give
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any specific formula for such polynomials that could lead to a better understanding of
their structure and of the interplay with algebraic geometry.

In the classical case of differential operators, that is in the case of H1, there is a way
to construct the annihilating algebraic curves via determinants, going back to Burchnall
and Chaundy [2, 3, 4]. Extension of this construction to q-difference operators, or more
generally to q-deformed Heisenberg algebras can be done, but due to restrictions on the
size of this article, it will be presented in its full extent in [24]. Here we would like instead
to give some new interesting examples strongly indicating that the determinants work
well also in the q-deformed case. These examples also provide a good illustration for the
general method.

Before we turn to the examples let us first review the classical Burchnall-Chaundy
construction for differential operators. Let P =

∑n
i=0 pi(x)Di and Q =

∑m
i=0 qi(x)Di be

two differential operators of degree n and m respectively, where functions pi(x) and qi(x)
are analytic in their common domain of definition, or just formal power series, or as in all
examples in this article, polynomials in x with coefficients in C. The original Burchnall-
Chaundy theorem states, informally, that two commuting differential operators P and Q
lie on an algebraic curve, in the sense that they are annihilated by a polynomial in two vari-
ables after being substituted for the variables. One of the first consequences of this is that
the eigenvalues, corresponding to a joint eigenfunction of the two operators, are coordi-
nates of a point on that curve. There are also other deeper connections of the properties of
the algebraic curve to properties of the solutions of the equations associated to these opera-
tors, for example the non-linear differential equations in the coefficient functions, obtained
from commutativity of those operators [18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31].

The original proof of Burchnall-Chaundy theorem depends heavily on the existence of
solutions of boundary value problems for ordinary differential equations, making a simple
adaption of it to q-difference operators problematic. A nice feature of the proof in the
differential operator case, however, is that it is constructive in the sense that it actually
tells us how to compute such an annihilating curve, given the commuting operators. This is
done by constructing the resultant (or eliminant) of operators P and Q. We sketch this
construction, as it is important to have in mind for this article. The following row-scheme
is a first stepping-stone:

Dk(P − sI) =
n+k∑
i=0

θi,kD
i − sDk, k = 0, 1, . . . ,m− 1 (2.4)

Dk(Q− tI) =
m+k∑
i=0

ωi,kD
i − tDk, k = 0, 1, . . . , n− 1 (2.5)

where θi,k and ωi,k are certain functions built from the coefficients of P and Q respectively,
whose exact form is calculated by moving Dk through to the right of the coefficients,
using Leibniz rule. The coefficients of the powers of D on the right hand side in (2.4)
and (2.5) build up the rows of a matrix exactly as written. That is, as the first row
we take the coefficients in

∑n
i=0 θi,0D

i − sD0, and as the second row – the coefficients
in

∑n+1
i=0 θi,1D

i − sD, continuing this until k = m − 1. As the mth row we take the
coefficients in

∑m
i=0 ωi,0D

i − tD0, and as the (m + 1)th row we take the coefficients in∑m+1
i=0 ωi,1D

i − tD and so on. In this manner we get a (m + n) × (m + n)-matrix using
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(2.4) and (2.5). The determinant of this matrix yields a bivariate polynomial F (s, t) in
s and t over C (sometimes called the Burchnall-Chaundy polynomial), defining an
algebraic curve F (s, t) = 0, and annihilating P and Q when putting s = P and t = Q.

Now, generalizing this idea to the case of q-difference operators, we indicate with a
number of examples, that it is in fact a sound construction even in the q-deformed case.
Respecting the limitations of this article, a rigorous general proof of this will, as we
mentioned above, have to stay aside until [24] for the benefit of some interesting examples
to which we now turn.

Example 2.1. We take P = M3
xD

3
q and Q = M2

xD
2
q . Then the following formulae hold:

D0
q(P − sI) = −sI + M3

xD
3
q ,

Dq(P − sI) = −sDq + {3}qM
2
xD

3
q + q3M3

xD
4
q ,

D0
q(Q− tI) = −tI + M2

xD
2
q ,

Dq(Q− tI) = −tDq + {2}qMxD
2
q + q2M2

xD
3
q ,

D2
q(Q− tI) = −tD2

q + {2}qD
2
q + (q{2}q + q2{2}q)MxD

3
q + q4M2

xD
4
q =

= ({2}q − tI)D2
q + q{2}2

qMxD
3
q + q4M2

xD
4
q .

The coefficients in front of the powers of Dq in these equalities can be placed in an operator
matrix with the determinant

∣∣∣∣∣∣∣∣∣∣

−s 0 0 M3
x 0

0 −s 0 {3}qM
2
x q3M3

x

−t 0 M2
x 0 0

0 −t {2}qMx q2M2
x 0

0 0 {2}q − t q{2}2
qMx q4M2

x

∣∣∣∣∣∣∣∣∣∣
.

Expanding this we get

q3
(
q3s2 + q(2q + 1)st + {2}qt

2 − t3
)
M6

x ,

which gives us the curve

F (s, t) = q3s2 + q(2q + 1)st + {2}qt
2 − t3 = 0. (2.6)

We now show that P and Q satisfy F (P,Q) = 0. To this end we use (2.3). So we return
momentarily to the notation Mx = B and Dq = A. This by the way shows that the fact
remains true even more generally in Hq, not just for q-difference operators. So taking
s = P and t = Q we have

s2 = (B3A3)2 =
[
q−3BA(BA− I)(BA− (q + 1)I)

]2 =

= q−6(BA)2(BA− I)2(BA− (q + 1)I)2 =

= q−6
(
(BA)6 − 2(q + 2)(BA)5 + (q2 + 6q + 6)(BA)4−

− 2(q2 + 3q + 2)(BA)3 + (q + 1)2(BA)2
)
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In a similar fashion we get

st = q−3BA(BA− I)(BA− (q + 1)I) · q−1BA(BA− I) =

= q−4
(
(BA)5 − (q + 3)(BA)4 + (2q + 3)(BA)3 − (q + 1)(BA)2

)
,

t2 = q−2(BA)2(BA− I)2 = q−2
(
(BA)4 − 2(BA)3 + (BA)2

)
and, finally,

t3 = q−3(BA)3(BA− I)3 = q−3
(
(BA)6 − 3(BA)5 + 3(BA)4 − (BA)3

)
.

Insertion of the above relations into (2.6) gives

F (P,Q) = q3
(
q−6

(
(BA)6 − 2(q + 2)(BA)5 + (q2 + 6q + 6)(BA)4+

− 2(q2 + 3q + 2)(BA)3 + (q + 1)2(BA)2
))

+ q(2q + 1)
(
q−4

(
(BA)5−

− (q + 3)(BA)4 + (2q + 3)(BA)3 − (q + 1)(BA)2
))

+

+ {2}q

(
q−2

(
(BA)4 − 2(BA)3 + (BA)2

))−
−

(
q−3

(
(BA)6 − 3(BA)5 + 3(BA)4 − (BA)3

))
= [collecting terms] =

=
(
q−3 − q−3

)
(BA)6 + q−3

(−2(q + 2) + 2q + 1 + 3
)
(BA)5+

+ q−3
(
(q2 + 6q + 6) − (2q + 1)(q + 3) + q(q + 1) − 3

)
(BA)4+

+ q−3
(−2(q2 + 3q + 2) + (2q + 1)(2q + 3) − 2q(q + 1) + 1

)
(BA)3+

+ q3
(
(q + 1)2 − (2q + 1)(q + 1) + q(q + 1)

)
(BA)2 =

= 0

as the coefficients in front of all powers of BA vanish.
In the special classical case of differential operators when q = 1, for P = M3

xD
3,

Q = M2
xD

2 we get the following equalities:

D0(P − sI) = −sI + M3
xD

3,

D(P − sI) = −sD + 3M2
xD

3 + M3
xD

4,

D0(Q− tI) = −tI + M2
xD

2,

D(Q− tI) = −tD + 2MxD
2 + M2

xD
3,

D2(Q− tI) = (2 − t)D2 + 4MxD
3 + M2

xD
4,

which yield the following determinant∣∣∣∣∣∣∣∣∣∣

−s 0 0 M3
x 0

0 −s 0 3M2
x M3

x

−t 0 M2
x 0 0

0 −t 2Mx M2
x 0

0 0 2 − t 4Mx M2
x

∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant results in (s2 + 3st + 2t2 − t3)M6
x , and equating it to zero we

get the classical Burchnall-Chaundy curve

s2 + 3st + 2t2 − t3 = 0.
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Note that this curve can be obtained also within the family of algebraic curves (2.6)
by taking the parameter value q = 1. �

Example 2.2. Suppose now we have P = M4
xD

4
q and Q = M3

xD
3
q . Similarly to the

previous example we get the following determinant to compute:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−s 0 0 0 M4
x 0 0

0 −s 0 0 {4}qM
3
x q4M4

x 0
0 0 −s 0 {4}q{3}qM

2
x q3{2}q{4}qM

3
x q8M4

x

−t 0 0 M3
x 0 0 0

0 −t 0 {3}qM
2
x q3M3

x 0 0
0 0 −t {3}q{2}qMx q2{3}q!M

2
x q6M3

x 0
0 0 0 {3}q! − t q{3}2

q{2}qMx q4{3}2
qM

2
x q9M3

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Doing the determinant computation gives us, after suitable simplifications,

F (s, t) =t4 − (q3 + 2q2 + 2q + 1)t3 − q6s3 − q(3q3 + 4q2 + 3q + 1)st2−
− q3(3q2 + 2q + 1)s2t = 0. (2.7)

Let us now look at the corresponding classical case of differential operators. We take
P = M4

xD
4 and Q = M3

xD
3. We get the following determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−s 0 0 0 M4
x 0 0

0 −s 0 0 4M3
x M4

x 0
0 0 −s 0 12M2

x 8M3
x M4

x

−t 0 0 M3
x 0 0 0

0 −t 0 3M2
x M3

x 0 0
0 0 −t 6Mx 6M2

x M3
x 0

0 0 0 6 − t 18Mx 9M2
x M3

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

When this is expanded and equated to zero we get the curve

t4 − 6t3 − s3 − 11st2 − 6s2t = 0. (2.8)

To calm our fears, note that again when q = 1 we get (2.8) from the equation (2.7).
Furthermore, we can see, although with considerably more effort than in the last case,
that F (P,Q) vanishes identically. �

Example 2.3. Let us consider now a more complicated situation of non-monomial op-
erators P = M2

xD
2
q + M3

xD
3
q and Q = MxDq + M2

xD
2
q . The corresponding determinant

becomes
∣∣∣∣∣∣∣∣∣∣

−s 0 M2
x M3

x 0
0 −s {2}qMx ({3}q + q2)M2

x q3M3
x

−t Mx M2
x 0 0

0 1 − t ({2}q + q)Mx q2M2
x 0

0 0 2{2}q − t q({2}2
q + q)Mx q4M2

x

∣∣∣∣∣∣∣∣∣∣
,

which gives an algebraic curve when the determinant is expanded

F (s, t) = − t3 + (q3 − 3q2 + q + 3)t2 + q(5q − 2q2 + 1)st−
− (q − 2)(q2 − q − 1)t + q3s2 − q2(q − 1)(q − 2)s = 0. (2.9)
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Now, let us take the classical case of differential operators P = M2
xD

2 + M3
xD

3 and
Q = MxD + M2

xD
2. The corresponding determinant now becomes

∣∣∣∣∣∣∣∣∣∣

−s 0 M2
x M3

x 0
0 −s 2Mx 4M2

x M3
x

−t Mx M2
x 0 0

0 1 − t 3Mx M2
x 0

0 0 4 − t 5Mx M2
x

∣∣∣∣∣∣∣∣∣∣
,

which gives after expanding the determinant the following algebraic curve:

s2 + 4st− t + 2t2 − t3 = 0.

We get this curve also by letting q → 1 in (2.9). So we have consistency. However, notice
that there appears a new term in the defining equation for the q-deformed curve that does
not manifests itself in the ordinary differential case. The disappearance of terms happens
here also for other values of q, such as 1+

√
5

2 and 1−√
5

2 .
Let us check that F (P,Q) = 0 even in this case. Using (2.3) we see that insertion of

P = B3A3 + B2A2 = q−3BA(BA− I)(BA− {2}I) + q−1BA(BA− I) =

= q−3BA(BA− I)(BA− (q + 1 − q2)I),

Q = B2A2 + BA = q−1BA(BA− I) + BA = q−1BA(BA− (1 − q)I)

into (2.9) gives

F (P,Q) = q−3(BA)2(BA− I)2(BA− (q + 1 − q2)I)2−
− q−3(−1 − 5q + 2q2)(BA)2(BA− (1 − q)I)(BA− 1)(BA− (q + 1 − q2)I)−
− q−1(q − 1)(q − 2)BA(BA− I)(BA− (q + 1 − q2)I)−
− q−3(BA)3(BA− (1 − q)I)3+

+ q−2(−3q2 + q + 3 + q3)(BA)2(BA− (1 − q)I)2−
− q−1(q − 2)(q2 − q − 1)BA(BA− (1 − q)I).

Expanding this and collecting exponents of BA shows that F (P,Q) does indeed vanish
identically. �

We would be very interested to get an answer to the following question. Is it true that
the genus of the Burchnall-Chaundy curves resulting from operators Mn

x D
n
q and Mm

x Dm
q

(and linear combination of these) is always zero irrespective of the value of q ∈ C \ {0}?
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