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Abstract

In this report I will discuss the classical Hénon–Heiles model for the motion of a
star around a galactic centre, first introduced in the (still very readable) paper
[HH64]. I will also briefly mention why this model is important, historically, as
well as in present day problems.

1 Introduction

Consider the motion of a star around a galactic centre. The motion has energy
H = K+V , where K is the kinetic energy of the motion and V is the potential
energy. Recall that in classical mechanics, K is dependent only on the speed of
the star. We will study the possible trajectories the star traces out around the
galactic centre in an idealized two-dimensional model. The model we will use
is a classical model introduced by the two astronomers Michel Hénon and Carl
Heiles in 1964 and can be considered the starting point of the modern study of
dynamical systems and their complexity.

What Hénon–Heiles did was to introduce a potential function (and hence a
force field) that they argued well approximated the force field a star is subject to
in a galaxy (in particular the Milky Way). From this potential they constructed
(via a standard technique in classical mechanics) a system of non-linear differ-
ential equations modelling the motion of the star. They then solved this system
numerically with a computer (remember this was in 1964!) with a method called
the four-step Runge–Kutta method, for different initial conditions. The results
they found was very surprising and interesting. The model predicted a very
complicated and erratic motion of the star for the energy in a certain range.

The results of Hénon and Heiles instigated a flurry of activity in non-linear
dynamical systems and many more models1 turned out to have complicated
behaviour at certain parameter values of the model. Some of these models were
known experimentally to have some peculiar quirks, but no theoretical study

1For instance, some chemical reactions, electrical circuits, biological systems, turbulent
fluid flow, weather models, mechanical systems such as double pendulums and other types of
oscillations, e.t.c., where shown to behave strangely under certain conditions.

1



Figure 1: The Hénon–Heiles potential with contour curves

could show the true complexity of the systems until the Hénon–Heiles model
appeared.

Nowadays, non-linear dynamical systems are essential for the study of im-
portant practical problems in almost all disciplines of science and engineering.
For instance, models involving feedback and oscillations are almost always non-
linear in real life. In this way, the Hénon–Heiles model, although not explicitly
concerned with engineering2, is a very important historical model, one that is
simple to describe mathematically, but has very complicated behaviour, indi-
cating the subtleties involved in studying real-life phenomena.

2 The Hénon–Heiles model

Instead of considering an actual star orbiting around a galactic centre, Hénon
and Heiles considered a point mass (with normed mass = 1) orbiting around
a central mass placed in origo in the (x, y)-plane. They decided to use the
centrally symmetric conservative force field F (x, y) =

(
x+ 2xy, y + x2 − y2

)T ,
with potential

Ψ(x, y) =
1

2

(
x2 + y2

)
+ x2y − y3

3
, (2.1)

2It turns out though, that the Hénon–Heiles potential can be used to describe other physical
systems, such as ions in magnetic fields.
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as the attracting force3. This means that the force the star is under the influence
of at the point (x0, y0), is given by

F (x0, y0) =
(
2x0y0 + x0, y0 + x20 − y20

)T
.

As mentioned above the total energy of the system, comprises of the kinetic
energy K, which is function only of x′ and y′, and the potential energy V = Ψ,
which a priori is a function of the four variables x, y, x′, y′. However, in the
Hénon–Heiles model, Ψ is only dependent on x and y.

The motion of the star P is parametrised by q(t) = (x(t), y(t)), with speed
p(t) = (x′(t), y′(t))T (since m = 1, the momentum p is equal to the speed v).
Therefore, the kinetic energy is given by

K(p) = K(x′, y′) =
p(t)2

2
=
x′(t)2 + y′(t)2

2
=

1

2

(
x′(t)2 + y′(t)2

)
.

From this we see that the total energy is given by the expression

H(q,p) = K(p) + Ψ(q)

=
1

2

(
x′(t)2 + y′(t)2

)
+

1

2

(
x(t)2 + y(t)2

)
+ x(t)2y(t)− y(t)3

3
.

(2.2)

Observe that the energy is implicitly dependent on time at this point.
What we will do now is to treat

(q,p) = (x, y, x′, y′)

as four independent variables, or as giving points in R4. Since these variables
are functions of t, we see that as t varies we get a curve in R4. From now on
we will also follow the classical convention and denote x′ by px and y′ by py.
Notice that with this view-point, H becomes a scalar field of four variables.

2.1 The Hénon–Heiles potential
Let us look a bit at the potential Ψ(x, y).

First of all we can note that close to the origin, the second-order term in
Ψ(x, y), 1

2 (x2 +y2), will dominate over the other two (which are of order three),
implying that around the origin the contour (and hence level) curves will be
close to circular. This is clearly visible in Figure 2. This will give the potential
an almost radial symmetry around the z-axis close to the origin.

We can also note that the other two terms will dominate when x, y → ±∞
and Ψ(x, y) ≈ x2y − 1

3y
3 → ±∞ in the limits.

The regions in Figure 2 where the closed curves open up, i.e., in the direction
of the y-axis and in the directions at angles ±2π/3 from this axis, are called the
exit basins. The reason for this will become apparent in a while.

Suppose the star is at position (xi, yi) at time ti ≥ 0. Then the potential
energy the star has at this point at the given time is Ψ(xi, yi). Notice that

3They decided upon this specific choice by computer experimentation.
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Figure 2: The contour curves of Ψ(x, y).

Figure 3: The star moving along trajectory with associated traced out potential.
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the point Pi = (xi, yi,Ψ(xi, yi)) on the potential surface above (xi, yi) is a
representation of this potential energy. Hence the motion of the star traces out
a curve on the surface, lying directly above the trajectory of the star. See Figure
3.

2.2 The equations of motion

The physical system is governed by the Hamilton equations (which is more or
less just a fancy version of Newton’s second law)

dp

dt
= −

(
∂H
∂x

∂H
∂y

)
,

dq

dt
=

 ∂H
∂px

∂H
∂py

 . (2.3)

With H given as in (2.2) one easily checks that the equations (2.3) become
x′ = px
p′x = −x− 2xy
y′ = py
p′y = −y − x2 + y2.

(2.4)

Notice that this is a non-linear system of differential equations. We will see
that this leads to very complicated and «unpredictable» motions of the star
around the galactic centre. Notice that the system involves the vector field F
as it should (in fact, −F ).

Important point. We will now order the variables as (x, px, y, py). Notice that
this is consistent with the way the system (2.4) is written.

3 Simulations

We first discuss the set-up for the simulations.
Given initial conditions x0, px,0, y0 and py,0, a solution is four functions

x(t), y(t), px(t) and py(t) in the variable t satisfying (2.4). Therefore these func-
tions trace out a curve in R4 parametrized as

c(t) =
(
x(t), px(t), y(t), py(t)

)
.

Observe the order of the coordinates.
Since it is not so easy to visualize geometry in four dimensions we project

this curve to R3 and R2:

c(t) =
(
x(t), px(t), y(t), py(t)

)
−→ s3d(t) =

(
x(t), y(t), py(t)

)
∈ R3 (3.1a)

and

c(t) =
(
x(t), px(t), y(t), py(t)

)
−→ s?(t) =

(
x(t), y(t)

)
∈ R2. (3.1b)
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We will also do another «projection» but we come to this shortly. Notice that
the trajectory of the second curve is exactly the trajectory the star trace out
around the galactic centre.

As with most non-linear systems, exact solutions to (2.4) do not exist. There-
fore we are constrained to use numerical methods to solve it. We use the four-
step version of Runge–Kutta for this purpose4.

3.1 Fixing the energy
It turns out that it is reasonable to fix the energy. So suppose we fix the energy
H to be E. This means we only look at the star trajectories that have energy
E for all t. In particular, we have

Ψ(x, y) ≤ E and
1

2

(
p2x + p2y

)
≤ E.

This implies that the trajectories of s?, s3d and c are all contained in a domain
of finite measure5, since if they were not, the star would simply disappear out
of the galaxy (think about what happens if we allow H →∞).

From Figure 2 we see that somewhere between Ψ(x, y) = 0.150 and Ψ(x, y) =
0.185 the contour curves of the potential function goes from being closed to being
open. The threshold energy turns out to be 1/6. Below this value, the contour
(and hence level) curves of Ψ(x, y) are closed (and hence the energy is bounded)
and above this the curves are open (and hence H is unbounded).

In fact, suppose E ≥ 1/6 and that we chose initial conditions in the region
where the contour curves of Ψ are closed (see Figure 2), then, eventually, the star
will escape through one of the exit basins (hence the name) and will disappear
to infinity (i.e., out of the galaxy); see Figure 11. If we were to chose initial
conditions (with E ≥ 1/6 still) in the regions outside where the contour curves
are closed, the star will immediately disappear to infinity.

In conclusion, we let
0 ≤ H ≤ 1/6.

We will now treat H as a free parameter that we vary in this interval, and
for fixed such H = E, we will study the motion of the star for different initial
conditions.

One important consequence of fixing the energy is that we can reduce the
number of variables. In fact, fixing H = E, we can re-write (2.2) as

px(t) = ±
√

2E − x(t)2 − y(t)2 − x(t)2y(t) +
2

3
y(t)3 − py(t)2. (3.2)

For simplicity, we consider only the positive square-root from now on. So this
means that the only «real» variables (upon fixing H = E) is x, y and py.

4Consult virtually any textbook on differential equations for details on this method. I
won’t state the explicit algorithm here.

5By this I mean, area, volume and «four-dimensional volume» (which can be defined as
the quadruple integral

∫∫∫∫
S⊂R4

dxdydudv), respectively.
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There is, however, one important point. to observe: we must still use px
as a variable when we run Runge–Kutta. This is because the solutions to the
system of equations is could be (at least in principle) sensitive to energy level.
It could be that the solution that Runge–Kutta produces, at some point gives
a px that is not compatible with (3.2) and the chosen energy level E (up to
some chosen margin of error). This is something that has to be checked in every
step of the numerical iteration and if at some point the difference between the
px that Runge–Kutta produces and the px that (3.2) produces, lies outside this
error interval, then we must disregard that trajectory and start over with new
initial conditions6.

When we have fixed our energy E, we must be careful when choosing initial
conditions. We must take into account that

K(px,0, py,0) + Ψ(x0, y0) ≤ E,

so this has to be checked when starting the simulation. In particular, since
Ψ(x0, y0) ≤ E, we must take initial positions inside the contour curve Ψ(x, y) =
E.

3.2 Poincaré sections
The idea of a Poincaré section is to intersect the curve with a plane (or an
arbitrary surface, for that matter). In our case, as we will intersect the (four-
dimensional) curve, or rather trajectory, with the plane x = 0, it actually is the
same as a projection (onto the yz-plane). However, we could equally well have
chosen any other plane, but then the coding would be slightly more complicated,
although the principle is exactly the same.

Figure 4 illustrates the idea. Suppose we have a trajectory, in R3 in the
figure, and suppose we insert the plane x = 0. Then the Poincaré section of the
trajectory, is the set of points the curve generates when it intersects the plane.

Notice that this defines an iterative map in the following way. Suppose the
curve starts in a point p0 in the plane x = 0. Then we integrate (i.e., calculate
the trajectory) until we reach a point p1 = π(p0) when the trajectory intersect
the plane again. Integrating further we record the next time the trajectory
intersects the plane, this time in the point

p2 = π(p1) = π(π(p0)) = π(2)(p0).

Continuing in this manner we get a sequence of points {p0, p1, p2, . . . , pn, . . . }
in the yz-plane, with

pn+1 = π(pn) ⇐⇒ pn+1 = π(n)(p0).

The map π thus defined is the return map associated with the Poincaré section.
6I’m now uncertain that what I describe in this paragraph is actually necessary; it could

be that this is automatic. The checks needed to make sure this condition is fulfilled might be
one source of the tardiness of the computations.
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Figure 4: Poincaré section (blue dots) of the trajectory x0 = 0, y0 = 0.4,
py,0 = 0.1; tmax = 100, E = 0.100.

One should, however, be aware that it is in general not possible to write
down formulas for the return map in any sensible way.

What we will do, is not to plot the Poincaré section of each individual trajec-
tory separately, but rather plot a whole range of sections for many trajectories
(i.e., for many different initial conditions) of the same energy E in the same plot.
In this way we can talk about the Poincaré section of energy E. We denote this
ensemble by ΠE .

One point might deserve mentioning here. If we look at the section in Figure
4, we see that it appears that there are more instances of where the trajectory
intersect the plane, than in the blue dots. This is a rather subtle point. Re-
member that the intersection actually occurs in four dimensions, not in three
as we have depicted it here. In four dimensions the trajectory and the plane do
not intersect in these points (only in the blue ones). This is one more instance
of where our three-dimensional perception is failing us in applications to higher
dimensions7.

7The same phenomena appears already in lower dimensions. For instance, take the curve
c(t) = (t, t2 − t, t2) in R3 and the straight line y = x in R2. These two curves intersect only
in the origin (0, 0, 0). However, if we project c onto R2 we get another intersection point,
namely (2, 2) (the conscientious reader should check this!). So projection has produced an
intersection that didn’t really exist originally.
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3.3 Computations

The computations were all done with code8 written in Python 3 on a computer
with an Intel 5, 2.6 GHz processor, and 8 GB ram. The computations of the
Poincaré sections took a very long time to complete, indicating that the code
could possibly be optimized, or better, have been written in C or C++. It is
somewhat unclear what kind of optimization in the present code could have
produced a significant lowering of the computational time, making me lean
towards the idea that Python might not be the best language for these types of
heavy computations.

4 Results

4.1 The star trajectory s?

We start with the two-dimensional projection s? in (3.1b). As we mentioned
before, the model is simplified so that the star only moves in the galactic plane,
which we view as the xy-plane. The galaxy is centred with the origin in the
(assumed) central (supermassive) black hole.

It is clear that the trajectory is dependent on the initial conditions: position
(and hence potential energy) and momentum (and hence kinetic energy). By
giving the initial conditions we therefore fix the start position (x0, y0) and start
momentum p0 = mv0 = (px,0, py,0)T . From the theory of ordinary differential
equations it follows that there is a unique trajectory (solution curve) s? going
through this starting point, and with the velocity as the tangent vector at this
point. The integration of the motion (i.e., the numerical solution of the system
of equations) then gives the whole star trajectory step-by-step (with the given
step size) for as long as we would like.

It is however important to note that we use a numerical method for solving
the system. Therefore there is a built-in error that has to be accounted for.
The whole thing becomes even more complicated as the error can be magnified
as the integration proceeds. This is nothing that will be of any concern for us
now, but it is a very important and real issue that has to be handled rigorously
in other practical applications.

We will later see another aspect of the model that is somewhat related to the
error issue. Namely, so called sensitive dependence on initial conditions. This
is not the same as the involvement of errors, which is built-in in the method of
solving the system (or failure of accurately measure the initial conditions if we
are looking at it from a practical point of view). Sensitive dependence on initial
conditions is an inherent trait of the system or model.

8Which can be made available upon request.
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Figure 5: Two trajectories with energy E = 0.833, tmax = 100.

Figure 6: Same trajectory with tmax = 100 and tmax = 1000.

4.1.1 Plots

In the plots, Figures 12–10, the numbers in the upper-right corner indicates x0,
y0, py,0 and E, respectively (from top to bottom). In Figure 11 is shown how,
for energies higher than 1/6, the trajectories escape through (in this case two
of) the exit basins.

4.1.2 Comments

There are three main points (which are connected) to notice with the plots:

(1) Regular trajectories. The first thing to notice is that all energies have
some trajectories that are regular in the sense that they are more or less
predictable and that there is a clear pattern involved. This does clearly not
exclude the possibility that the trajectories can be quite complicated. One
can also notice that, independent on the complexities of the trajectories,
they always occupy a bounded region (of finite area) in the plane.

(2) Sensitive Dependence on Initial Conditions (SDIC) at higher en-
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Figure 7: Observe that a slight change in one initial condition give big change
in trajectory; tmax = 100 and tmax = 1000, E = 0.100.
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Figure 8: Observe once again the slight change in one initial condition giving a
big change in trajectory; tmax = 100 and tmax = 1000, E = 0.125.
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Figure 9: Observe once again the slight change in one initial condition giving a
big change in trajectory; tmax = 100 and tmax = 1000, E = 0.140.
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Figure 10: Observe once again the slight change in one initial condition giving
a big change in trajectory; tmax = 100 and tmax = 1000, E = 0.160.
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Figure 11: Trajectories escaping through two of the exit basins.

ergies. The next thing to observe is that, as the energy increases, the
sensitivity of the geometry of the trajectories are very sensitive to changes
in initial conditions. In other words, changing the initial conditions ever
so slightly can change the long-term behaviour of the motion significantly.
See for instance Figure 7 and the figures following that. This observation
leads to the next one:

(3) Chaotic trajectories. When the energy increases above a certain thresh-
old (which is about E = 1/12) the long-term behaviour can be very com-
plicated and lack any kind of clear pattern or structure. Such trajectories
are called chaotic. There is a very close connection between sensitive de-
pendence on initial conditions and chaotic trajectories: chaotic trajectories
tend to be very sensitive to changes in initial conditions, and vice versa.
For instance, when E = 0.160, one can note that there is a transition from
a disordered trajectory to a more ordered one, and then to disorder again,
as py,0 increases from 0.055 to 0.057, via 0.056.

However, that a trajectory is chaotic does not mean that there are no
global symmetries involved. This can be seen for instance in Figure 7
where (in the cases x0 = 0.025, y0 = −0.125, py,0 = 0.1 and y0 = −0.13)
there are global symmetries, but locally (around the origin for instance)
there are no discernible patterns.

One can also notice that the short-term behaviour can be quite regular, but
as time goes on, this behaviour then transitions into a quite disordered
behaviour. As an example of this see the last two initial conditions in
Figure 10.

The above snap-shots does not quite convey the true complexities involved. In
fact, the higher the energy the more chaotic the trajectories become. When
E = 0.160, essentially all initial conditions will lead to chaotic behaviour of the
trajectory in the long term. This will become apparent when we look at the
Poincaré sections ΠE below.

15



Figure 12: The same trajectory viewed from different angles; E = 0.833, tmax =
100.

One last thing to notice with the plots is that the global geometric form
bounding a trajectory seems to be quite familiar. Namely, a trajectory of
constant energy E lies wholly inside the contour curve of potential energy
Ψ(x, y) = E. This is naturally not a coincidence and can be explained from
the inequalities bounding the initial conditions as in section 3.1). When the
trajectory is chaotic, we see that it tends to fill out the whole domain inside the
contour curve. This is actually an indicator of chaotic trajectories.

4.2 The three-dimensional projection s3d

We will now look at the three-dimensional plots with coordinates ordered as
(x, y, py). In the plots, the trajectory is projected onto the xy-plane showing
that this does indeed give the trajectory as in the previous plots. So, a point
(a, b, c) on this three-dimensional trajectory represents the position (a, b) of the
star and the y-coordinate of the momentum c at that point (a, b).

For each trajectory, we present two views, one giving the placement of the
trajectory in R3 and one indicating the projection on the ypy-plane. Hence these
two plots are simply the same trajectory, but viewed at different angles. The
un-numbered axis is the x-axis.

4.2.1 Plots

See Figures 13–16.

4.2.2 Comments

Notice that even when the energy goes up, there are trajectories with regular
behaviour (which we already remarked upon). This is quite clear from the view
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Figure 13: Observe that a slight change in one initial condition give big change
in trajectory; tmax = 300, E = 0.100.
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Figure 14: Observe that a slight change in one initial condition give big change
in trajectory; tmax = 300, E = 0.125.
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Figure 15: Observe that a slight change in one initial condition give big change
in trajectory; tmax = 300, E = 0.140.
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Figure 16: Observe that a slight change in one initial condition give big change
in trajectory; tmax = 1000, E = 0.160.
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of the ypy-plane. Notice also that the trajectories are bounded in volume (we
can embed the trajectories in a sphere of radius at most one, for instance).

4.3 The Poincaré sections ΠE

We now turn to the Poincaré sections ΠE and these show the true complexity of
the model (in the energy spectrum 0 ≤ E ≤ 1/6 that we are interested in). As
we mentioned before, the essential feature of these Poincaré sections is that it
takes into account all the initial conditions at the same time. Starting with an
initial condition (x0, px,0, y0, py,0) we integrate successively to get the trajectory
in R4 and record all the points where the trajectory intersects the plane x = 0.
Then we move on to the next initial condition and repeat the procedure. We
do this for all initial conditions that are permissible for the fixed energy E.

4.3.1 Plots

In Figure 17, we first look at the Poincaré sections for one choice of initial
condition and varying energies, before looking at the sections ΠE . Finally, in
Figure 18 we present the full Poincaré sections for the energies E = 0.03, 0.055,
0.0833, 0.100, 0.125, 0.140 and 0.160.

4.3.2 Comments

The primary comment to be made is that, clearly, the dynamics and behaviour of
the star become very complicated for higher energies in the interval 0 ≤ E ≤ 1/6.
The trajectories hit the plane x = 0 in a completely unordered fashion. However,
even in the highest energy case, there are small «islands of tranquillity» where
the trajectories behave somewhat regularly.

Let us begin by looking at Figure 17. In the first section where E = 0.1, we
see that the trajectory is very regular. It is not periodic, but quasi-periodic: the
trajectory hits the plane along a well-defined closed curve. If it were periodic
it would hit the plane x = 0 in the same point over and over, and hence the
section would simply be a point.

Increasing the energy slightly to E = 0.106, we see that the curve seems
to split up into small «sub-curves». In the regions where this occurs there
are indications that the trajectory is slightly chaotic9. Increasing the energy
further (notice that the increase is not significant), we see that the splitting
has occurred and the trajectory hits the plane along several closed curves, in
addition to some curves that appear to be non-closed10. Then increasing the
energy ever so slightly once more we see that the trajectory turns into a chaotic
one: it hits the plane in regions where there are no obvious pattern (this can
actually be proven rigorously). But we still see that the trajectory (remember

9I’m not quite sure this is the case: it could simply be that I didn’t run the simulation
long enough to discern any pattern.

10This is probably not the case. If we were to zoom in on these non-closed curves we would
in all likelihood see that they are, in fact, closed.
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Figure 17: Poincaré sections of one trajectory with initial conditions x0 = −0.03,
y0 = −0.02, py,0 = 0.15. Observe that a slight change in energy can turn the
trajectory into a chaotic one.
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Figure 18: Poincaré sections of the Hénon–Heiles model for the indicated ener-
gies; tmax = 1000.
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that this is still only one trajectory describing the motion of the star) hits
the plane in some regions where there are closed curves, indicating that the
trajectory is a mix of being quasi-periodic and chaotic.

When increasing the energy infinitesimally again, we see that the trajectory
goes from chaotic to ordered, and then, increasing further, it goes into a mix of
quasi-periodicity and chaotic again. This is a clear example of SDIC.

Now, looking at the complete Poincaré sections ΠE in Figure 18, we see that
for low energies, below E = 0.0833, there are only quasi-periodic solutions and
a few periodic ones, which can be seen as small dots inside the closed curves.
The different colours are meant to represent different trajectories11.

Increasing the energy to E = 0.0833 we can see that the trajectories are
still mostly quasi-periodic, but there are small regions where there are chaotic
trajectories (or, rather, where trajectories hit the plane in a chaotic fashion).
For energies higher still, we see clearly that the regions where the trajectories
are chaotic dominates completely over the quasi-periodic ones, and finally, when
E = 0.160, there are almost no quasi-periodicity left.

5 Conclusions

5.1 Model specific conclusions

In this report we have looked at the Hénon–Heiles model for a star moving in
the planar potential field Ψ generated by a galactic centre. For energies in the
region 0 ≤ E ≤ 1/6 it turned out that the trajectories that the star follows
can be very complicated. In particular, it turned out that a slight change in
initial conditions for the star can produce a significant change in the trajectory,
for instance, going from an ordered (quasi-periodic) solution to a completely
disordered (chaotic) solution.

The manner in which we studied this model was that, starting from the
potential Ψ(x, y), we constructed, via some black(-box) magic, a system of non-
linear ordinary differential equations, describing the motion of the star. This
system was solved numerically for fixed energy with the four-step Runge–Kutta
method. We did this for different initial conditions and the solutions was rep-
resented in three different ways:

(i) the actual planar trajectory the star traces out;

(ii) the three-dimensional trajectory with the z-axis representing the y-coordinate
of the star’s momentum, and finally,

(iii) the Poincaré sections, where we bundle «all» initial conditions together in
one plot, giving a two-dimensional projections of a four-dimensional curve.

This was all done for different energies and compared.

11One should be aware, however, that since there are more trajectories than colours (at my
disposal) many trajectories share the same colour.
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5.2 General conclusions

Although we have studied a specific model, with a specific potential function,
the behaviour of this model is not an isolated pathology. In fact, this is a
phenomena that is prevalent in many (if not all) «real life» systems where
there is some non-linear part. For instance, oscillations (and vibrations) with
periodic damping and/or forcing, turbulence, thermodynamic systems12, and
systems with feedback, all show chaotic behaviour for certain values of the
system inherent parameters.

The Hénon–Heiles model is interesting for two reasons:

(a) it is historically the first example of a model that was shown, via direct
computer simulations, to exhibit chaotic behaviour;

(b) it is special for the reason that it is one of a few known examples of a
conservative system (that is, coming from a potential function) that is
chaotic.

It was known since at least from the beginning of the 20th century that there
are systems that are very complicated and show unpredictable behaviour (such
as the three-body problem and Poincaré’s proposed solution to this). However,
it was not until Hénon and Heiles studied the present model that a thorough
study of non-linear phenomena and chaotic behaviour was begun in earnest.

Another interesting feature of the Hénon–Heiles model is that it is conser-
vative. Most chaotic models come from systems that are dissipative, i.e., there
is a successive loss of energy due to friction or heat transfer, for instance. Dissi-
pative systems are never conservative, so the Hénon–Heiles model belongs to a
rather small set of chaotic systems. On the other hand, the fact that the system
is conservative means that the equations governing the motion is easy to find
and quite simple to solve numerically, as we have seen.

5.3 More information

For more information of the Hénon–Heiles model and non-linear dynamical sys-
tems have a look at [Zot15], [LR03] or [HSD04], for instance. There is an
infinitude of other papers and books related to the above subject, so if time and
other interests are of no importance to you, feel free to scour the web.
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