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1. Introduction

Multiplicative deformations—discretizations of derivatives have many applications in
models of quantum phenomena, as well as in analysis of complex systems and processes
exhibiting complete or partial scaling invariance. The key algebraic property which is
shared by these differential and difference type operators and making them so useful is
that they satisfy some versions of the Leibniz rule explaining how to calculate the operator
on products given its action on each factor. It is desirable therefore to have a single unifying
differentiation theory, which would be concerned with operators of a certain general class,
satisfying generalized Leibniz rule and containing as examples the classical differentiation
and other well-known derivations and differences.

The infinite-dimensional Lie algebra of complex polynomial vector fields on the unit
circle, the Witt algebra, is an important example in the classical differential and integral
calculus, relating it to topology and geometry, and at the same time responsible for many
of its key algebraic properties. The universal enveloping algebra of the Witt algebra is
isomorphic to an associative algebra with an infinite number of generators {d;: j € Z} and
defining relations

[dy, dn] =dndy — dpdy = (n —m)dy4,, forn,meZ. (1)

The Witt algebra can also be defined as the complex Lie algebra of derivations on the
algebra of Laurent polynomials C[z, 7] in one variable, that is, the Lie algebra of linear
operators D on C[r, 1] satisfying the ordinary Leibniz rule D(ab) = D(a)b + aD(b),
with the commutator taken as the Lie algebra product. This definition will be most im-
portant in this article, as it will be taken as a starting point for generalization of the Witt
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algebra, incorporating operators obeying a generalized Leibniz rule twisted by an endo-
morphism (Definition 10).

Important examples of such twisted derivation-type operators, extensively investigated
in physics and engineering and lying at the foundations of g-analysis, are the Jackson
g-derivative

Dy(f)(t) =

LD =IO a0, ()00 =

flgt) — f()
qg—1

acting on C[z,#~1] or various function spaces. It satisfies a o,-twisted (g-deformed)
Leibniz rule D(fg) = D(f)g + o4(f)D(g) for the re-scaling automorphism o, (f)(¢) =
f(g?). In this special case our general construction yields a natural g-deformation of the
Witt algebra which becomes the usual Witt algebra defined by (1) when ¢ = 1 (Theo-
rem 27). This deformation is closely related to the ¢-deformations of the Witt algebra
introduced and studied in [1,6,7,11,13,14,22,37-39]. However, our defining commutation
relations in this case look somewnhat different, as we obtained them, not from some con-
ditions aiming to resolve specifically the case of g-deformations, but rather by choosing
C[t,t~1] as an example of the underlying coefficient algebra and specifying o to be the
automorphism o, in our general construction for o -derivations. By simply choosing a dif-
ferent coefficient algebra or basic o-derivation one can construct many other analogues
and deformations of the Witt algebra. We demonstrate this by examples, constructing a
class of deformations of the Witt algebra parameterized by integers defining arbitrary en-
domorphisms of C[z, 1] (Theorem 31). Also, we construct a multi-dimensional analogue
of the Witt algebra by taking the underlying algebra to be the Laurent polynomials in
several variables C[zfl, ziﬂ, ...,z and choosing o to be an endomorphism mapping
Z1, ..., Zn to monomials (Theorem 37). The important feature of our approach is that, as
in the non-deformed case, the deformations and analogues of the Witt algebra obtained by
various choices of the underlying coefficient algebra, endomorphism o and of the basic
o-derivation, are precisely the natural algebraic structures for the differential and integral
type calculi and geometry based on the corresponding classes of generalized derivation and
difference type operators.

The non-deformed Witt algebra has a unique, up to multiplication by a scalar, one-
dimensional central Lie algebra extension, the Virasoro Lie algebra. Its universal envelop-
ing algebra, also usually called the Virasoro algebra, is the algebra with infinite set of
generators {d;: j € Z} U {c} and defining relations

. 1 .
dj,dr]l =djdx — drdj = (j — k)djk +5j+k,OE(J +1)j( —De,
[c,di]=cdp —drc=0, forj keZ. 2

We develop in this article a framework for the construction of central extensions of de-
formed Witt algebras built on o -derivations. To this end we show first that our generaliza-
tion of the Witt algebra to general o -derivations satisfies skew-symmetry and a generalized
(twisted) Jacobi identity (Theorem 5). The generalized Jacobi identity (22) has six terms,
three of them twisted from inside and the other three twisted on the outside. This defines



J.T. Hartwig et al. / Journal of Algebra 295 (2006) 314-361 317

a class of non-associative algebras with multiplication satisfying skew-symmetry and such
generalized Jacobi identities, and containing Lie algebras as the untwisted case. Some-
times the twisting can be put on the inside of all terms of the generalized Jacobi identity
in the same way, and the terms can be coupled to yield the generalized Jacobi identity
with three terms. For example, this is the case for the ¢-deformation of the Witt algebra
in Theorem 27. Armed with this observation we define the corresponding class of non-
associative algebras, calling this class hom-Lie algebras (Definition 14, Section 2.3), since
it is associated with a twisting homomorphism. When the twisting homomorphism is the
identity map, the generalized Jacobi identity becomes twice the usual Jacobi identity for
Lie algebras, making Lie algebras into an example of hom-Lie algebras. In Section 2.4,
for the class of hom-Lie algebras, we develop the central extension theory, providing ho-
mological type conditions useful for showing existence of central extensions and for their
construction. Here, we required that the central extension of a hom-Lie algebra is also a
hom-Lie algebra. In particular, the standard theory of central extensions of Lie algebras
becomes a natural special case of the theory for hom-Lie algebras when no non-identity
twisting is present. In particular, this implies that in the specific examples of deformation
families of Witt and Virasoro type algebras constructed within this framework, the corre-
sponding non-deformed Witt and Virasoro type Lie algebras are included as the algebras
corresponding to those specific values of deformation parameters which remove the non-
trivial twisting. In Section 4, we demonstrate the use of the central extension theory for
hom-Lie algebras by applying it to the construction of a central hom-Lie algebra extension
of the g-deformed Witt algebra from Theorem 27, which is a g-deformation of Virasoro
Lie algebra. For ¢ = 1 one indeed recovers the usual Virasoro Lie algebra as is expected
from our general approach.

It should be mentioned that the use of g-deformed Jacobi identities for construct-
ing g-deformations of the Witt and Virasoro algebras has been considered in physical
and mathematical literature [1,6,7,12,26,27,37—-41]. In particular, in [1] the two identities,
skew-symmetry and a twisted from inside three-term Jacobi identity, almost as the one for
hom-Lie algebras, have been clearly stated as a definition of a class of non-associative al-
gebras, and then used as the conditions required to be satisfied by the central extension of a
q-deformation of the Witt algebra from [14]. This results in a ¢ -deformation of the Virasoro
Lie algebra somehow related to that in the example we described in Section 4. Whether a
particular deformation of the Witt or Virasoro algebra obtained by various constructions
satisfy some kinds of Jacobi type identities is considered to be an important problem. The
generalized twisted 6-term Jacobi identity obtained in our construction, gives automatically
by specialization the deformed Jacobi identities satisfied by the corresponding particular
deformations of the Witt and Virasoro algebras. There are also works employing usual
and super Jacobi identities as conditions on central extensions and their deformations (for
example [2,16,23,45]). Putting these works within context of our approach would be of
interest.

We would also like to note that in the works [5,28,42,43], in the case of usual derivations
on Laurent polynomials, it has been specifically noted that a Lie bracket can be defined by
expressions somewhat resembling a special case of (20). We also would like to mention that
g-deformations of the Witt and Virasoro algebras were considered indirectly as an algebra
of pseudo ¢-difference operators based on the g-derivative on Laurent polynomials in [21,
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22,24]. We believe that it should be possible, and would be of direct interest, to extend the
results of these works to our general context of o -derivations. For the reader’s convenience,
we have also included in the bibliography some works we know of [3,4,8-10,15,17-20,
25,29-36,44] concerned with other specific examples of deformations of Witt algebras
and their applications that we believe could be considered in our framework, leaving the
possibility of this as an open question for the moment.

We also feel that the further development should include using our construction for
building more examples of deformed or twisted Witt and Virasoro type algebras based on
differential and difference type operators on function spaces studied extensively in analy-
sis and in numerical mathematics, and on functions on algebraic varieties important in
algebraic geometry and its applications. It could be of interest to extend our constructions
and examples over fields of finite characteristic, or various number fields. Development
of the representation theory for the parametric families of Witt and Virasoro type alge-
bras arising within our method, and understanding to which extent the representations of
non-deformed Witt and Virasoro algebras appear as limit points will be important for ap-
plications in physics.

2. Some general considerations

2.1. Generalized derivations on commutative algebras and on UFDs

We begin with some definitions. Throughout this section, A is an associative C-algebra,
and o and t denote two different algebra endomorphisms on A.

Definition 1. A (o, t)-derivation D on A is a C-linear map satisfying
D(ab) = D(a)t(b) + o (a)D(b),
where a, b € A. The set of all (o, 7)-derivations on A is denoted by D4, 1) (A).
Definition 2. A o -derivation on A is a (o, id)-derivation, i.e., a C-linear map D satisfying
D(ab) = D(a)b + o (a)D(b),
for a, b € A. We denote the set of all o-derivations by D, (A).

From now on, when speaking of unique factorization domains (UFD), we shall always
mean a commutative associative algebra over C with unity 1 and with no zero-divisors,
such that any element can be written in a unique way (up to a multiple of an invertible
element) as a product of irreducible elements, i.e., elements which cannot be written as a
product of two non-invertible elements. Examples of unique factorization domains include
Clx1, ..., x,], and the algebra C[z, t~1] of Laurent polynomials.

When o (x)a = ac (x) (or T(x)a =at(x)) forall x,a € A and in particular when A is
commutative, D7) (A) carries a natural left (or right) .A-module structure by (a, D)
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a-D:x+ aD(x). Ifa,be Awe shall write a | b if there is an element ¢ € A such that
ac=0b.1f S C Aisasubset of A, a greatest common divisor, gcd(S), of S is defined as an
element of A satisfying

gcd(S) |a forae S, 3)

and

bla foraeS = b|gcd(s). 4)

It follows directly from the definition that

SCTCA = gcd(T)|gcd(S) (5)
whenever gecd(S) and ged(T) exist. If A is a unique factorization domain one can show
that a gcd(S) exists for any nonempty subset S of A and that this element is unique up to

a multiple of an invertible element in .A. Thus we are allowed to speak of the gcd.

Lemma 3. Let A be a commutative algebra. Let o and t be two algebra endomorphisms
on A, and let D be a (o, 7)-derivation on A. Then

D(x)(t(y) —o(y)) =0
for all x € ker(t — o) and y € A. Moreover, if A has no zero-divisors and o # 7, then
ker(t — o) C ker D. (6)
Proof. Let y € Aand let x € ker(t — o). Then
0=D(xy —yx)=D(x)t(y) +0o(x)D(y) = D(y)t(x) =0 (y)D(x)
=D)(r(y) =0 () = DY) (t(x) =0 (x)) = D) (T(y) — 0 ().

Furthermore, if .4 has no zero-divisors and if there is a y € A such that t(y) # o (y) then
D(x)=0. O

Theorem 4. Let o and 7 be different algebra endomorphisms on a unique factorization
domain A. Then D, 1) (A) is free of rank one as an .A-module with generator

(t —0o) (t —o)(x)
X —

8 8

A=

()

where g = gcd((r — o) (A)).
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Proof. We note first that (t — o) /g is a (o, T)-derivation on A:

ﬁ—oXmﬂzr@ﬁOO—auw@)

8 8
_ @@ o)t +o@) (k) —o())
4
_ -0 () + o) - (r —G)(y)7
8 4

for x,y € A. Next we show that (t — o0)/g generates a free .A-module of rank one. So
suppose that

=0, (8)

for some x € A. Since t # o, there is an y € A such that (r — o)(y) # 0. Application of
both sides in (8) to this y yields

(t—0)»
X — =
8

0.

Since A has no zero-divisors, it then follows that x = 0. Thus
T—0O

8

A

is a free .A-module of rank one.
It remains to show that Dy, (A) € A - %. Let D be a (o, 7)-derivation on .4. We
want to find ap € A such that

D(x)=ap - M 9)
8
for x € A. We will define
_ D)-g
= (10)

for some x such that (t — o)(x) # 0. For this to be possible, we must show two things.
First of all, that

(t —o)(x) | D(x)-g foranyx with (t —o)(x)#0 (1)
and secondly, that

D(x)-g _ D(y)-g
(t—0)x) (t—0))

forany x, y with (t —o)(x) #0# (r —o)(y). (12)
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Suppose for a moment that (11) and (12) were true. Then it is clear that if we define ap
by (10), the formula (9) holds for any x € A satisfying (r — o)(x) # 0. But (9) also holds
when x € A is such that (z — o)(x) = 0, because then D(x) = 0 also, by Lemma 3.

We first prove (11). Let x, y € A be such that (t — o)(x) #0 # (t — o)(y). Then we
have

0=D(xy—yx)=Dx)t(y) +0x)D(y) — D(y)t(x) — o (y)D(x)
=DxX)(r(y) —0(») — D) (t(x) — o (x)),

so that
D) (z(y) —o(y) = D()(t(x) — o (x)). (13)
Now define a function 4 : A x A — A by setting
h(z, w) =ged((z) — o (2), T(w) —o(w)) forz, w e A.
By the choice of x and y, we have A (x, y) # 0. Divide both sides of (13) by i (x, y):

T(y)—G(y):D(y)f(X)—G(X). (14)

D
Oy hx.y)

It is true that

gcd<r(y) - a(y)’ T(x) — G(X)) _1
h(x,y) h(x,y)

Therefore, using that A is a UFD, we deduce from (14) that

T(x) —o(x) ‘D(x)
h(x,y) ’
that is, that,
(t—0)X) | D(x)-h(x,y) (15)

forany x,y € Awith (t —o)(x) 2#0+# (t —o)(y). Let S = A\ ker(z — o). Then from
(15) and property (4) of the gcd we get

(t —0)(x) | D(x) - ged(h(x, S)) (16)

for all x € A with (t — o) (x) #0. But
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ged(h(x, $)) =ged({ged((z — o) (x), (t — 0)(s)): s € 5})
=ged((z — o) () U{(x — o) (0)})
= ng((T —o)(AU {(r — a)(x)})

Thus (16) is equivalent to (11) which was to be proved.
Finally, we prove (12). Let x, y € A be such that (t — 0)(x) #0 # (t —o)(y). Then

0=D(xy —yx)=D)1(y) +0o(x)D(y) — D(y)7(x) — 0 (y)D(x)
=D)(t(») — () — D(t(x) —o(x)),

which, after multiplication by g and division by (t — o)(x) - (t — o)(y) proves (12). This
completes the proof of the existence of ap, and hence the proof of the theorem. O

2.2. A bracket on o-derivations

The Witt algebra is isomorphic to the Lie algebra D (C[z, r~]) of all derivations of the
commutative unital algebra of all complex Laurent polynomials:

Clt.t71] = { > art*: a; € C, only finitely many non-zero}.
keZ

In this section we will use this fact as a starting point for a generalization of the Witt algebra
to an algebra consisting of o -derivations.

We let A be a commutative associative algebra over C with unity 1, as in the example
A = C[z, t~1] from the previous paragraph. When we speak of homomorphisms (endomor-
phisms) in the sequel we will always mean algebra homomorphisms (endomorphisms),
except where otherwise indicated. If o : A — A is a homomorphism of algebras, we de-
note, as before, the .A-module of all o-derivations on A by D, (A). For clarity we will
denote the module multiplication by - and the algebra multiplication in A by juxtaposi-
tion. The annihilator Ann(D) of an element D € D, (A) is the set of all a € A such that
a- D =0. Itis easy to see that Ann(D) is an ideal in A for any D € D, (A).

We now fix a homomorphism o : A — A, an element A € D, (A), and an element
8 € A, and we assume that these objects satisfy the following two conditions:

o (Ann(A)) € Ann(4), (17)
Ao (a)) =80 (A(a)), forae A (18)

Let

A-A={a-Aae A
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denote the cyclic .A-submodule of D, (A) generated by A. We have the following theorem,
which introduces a C-algebra structure on A - A.

Theorem 5. If (17) holds then the map
(ot A-AxA-A— A-A
defined by setting
{@-Ab-A)yg=(0@) - A)ob-A)—(c(b)-A)o(a-A), fora,be A (19)

where o denotes composition of functions, is a well-defined C-algebra product on the C-
linear space A - A, satisfying the following identities for a, b, c € A:

(@ -Ab-A)g=(c(@Ab) —o(b)A)) - A, (20)

({a-Ab-Ayg=—(b-A,a-A)g. (21)

In addition, if (18) holds, then we have the Jacobi-like identity:

(0@ A (b-Ac-A)g), +8-{a-A(b-A,c-A)g),
+{ob)-Afc-Aa- D)), +8-(b- A, (c-Aa-A)g),
+{o()-A(a-Ab-A)), +8-(c-A{a-A,b-A)) =0. (22)

Remark 6. An important thing to notice is that the bracket (-,-), defined in the theorem
depends on the generator A of the cyclic submodule A - A of D, (A) in an essential way.
This reveals that one should in fact write (-,-),. 4 to explicitly indicate which A is chosen.
Suppose, however, we choose another generator A’ of A- A. Then A’ = u A for an element
u € A (not necessarily a unit). Take elements a - A’,b - A’ € A - A. Then the following
calculation shows how two different brackets relate when changing the generator (we use
the commutativity of A freely):
o(u)a-A",b- Ay o [the definition of the bracket]

= (U(a)uo(u) . A) o(bud) — (a(b)ua(u) . A) o (au - A)

=u- ((a(au) . A) o(bu-A)— (G(bu) . A) o (au - A))

=u-{au-A,bu-A)s A =u~(a-A/,b~A/)a,A

so the “base change”-relation is
o)-{a-A',b- A/)G,A/ =u-{la-A,b- Ao A

For the most part of this paper, we have a fixed generator and so we suppress the depen-
dence on the generator from the bracket notation and simply write {-,-),. On the other
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hand, if A has no zero-divisors, we shall see later in Proposition 9 that the dependence of
the generator A is not essential.

Remark 7. The identity (20) is just a formula expressing the product defined in (19) as
an element of A - A. Identities (21) and (22) are more essential, expressing, respectively,
skew-symmetry and a generalized ((o, §)-twisted) Jacobi identity for the product defined
by (19).

Before coming to the proof of the theorem we introduce a convenient notation. If f: A x
Ax A— A- Aisafunction, we will write

O fla,b,c)

a,b,c

for the cyclic sum
fla,b,c)+ f(b,c,a)+ f(c,a,b).

We note the following properties of the cyclic sum:

O (x- fla,b,e)+y-gab,0))=x- O flab,o)+y- O gla,b,o),

a,b,c a,b,c a,b,c

O f@ab,ey= O fb,c,a)= O fle,a,b),

a,b,c a,b,c a,b,c

where f,g: Ax Ax A— A- A are two functions, and x, y € .A. Combining these two
identities we obtain

a,b,c a,b,c

(f(a,b, c)+g(c,a,b)). (23)

c

O (fla,b,e) +gla, b,c)) = alf} (f(a,b,c)+g(b,c,a))
,b,

a

With this notation, (22) can be written

Oflo@ A (b-A.c-A)g), +8-(a-A.(b-A,c-A),) }=0. (24)

a,b,c

We now turn to the proof of Theorem 5.

Proof. We must first show that (-,-), is a well-defined function. That is, if a1 - A =as - A,
then

(a1-A,b-A)g ={az-A,b- Ay (25)

and
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(b-Aja1-A)g=(b-A,a2-A)g, (26)

for b e A. Now a1 - A = ay - A is equivalent to a; — az € Ann(A). Therefore, using the
assumption (17), we also have o (a1 — a2) € Ann(A). Hence
(a1-A,b-Ayg —(az- A, b- Ay
=(0(a1)-A)o(b-A)—(c(b)-A)o(ar-A) — (o(az)- A)o(b- A)
+(0(b)- A)o (az- A)
=(o(a1—az)-A)o(b-A)—(o(b) - A) o ((a1 — az) - A)
=0,
which shows (25). The proof of (26) is analogous.
Next we prove (20), which also shows that A - A is closed under (-,-),. Leta,b,c € A
be arbitrary. Then, since A is a o-derivation on A we have
(a-A,b-A)s(c)
=(0(@) - A)((b- 2)(0)) — (o (b) - A)((a- A)(c))
=0(a)A(bA(c)) — o (b)A(aA(c))
= U(a)(A(b)A(c) + U(b)A(A(C))) —ao(b) (A(a)A(c) + G(a)A(A(c)))
= (0@ A®D) — o (b)A(@))A(c) + (o (@)o (b) — o (b)a (@) A(A(c)).
Since A is commutative, the last term is zero. Thus (20) is true. The skew-symmetry iden-
tity (21) is clear from the definition (19). Using the linearity of o and A, and the definition
of {-,-)s, or the formula (20), it is also easy to see that (,-), is bilinear.
It remains to prove (22). Using (20) and that A is a o -derivation on A we get
(0@ A (b-A,c-A)),
= (U(a) - A, (a(b)A(c) — o(c)A(b)) . A)G
= {oz(a)A(a(b)A(c) —0(c)A(b)) —o (0 (b)A(c) —o(c)AD)) Ao (@)} - A
={0%(@)(A(c (1) A(c) + 0%(B) A% (c) — A0 (0)) Ab) — 2(c) A% (b))
— (02(0)o (A(©)) — o?()o (AD))) Ao (@)} - A
=0%@)A(0 (1) A(c) - A+ 0% (@)a?(h) A% () - A — 02 (@) Ao () A(D) - A
—o2(@)o?(©) A% (b) - A — 02 (b)o (A(0) Ao (@) - A
+02(e)o(AB)A(o(@) - A, (27)

where 62 =0 0o and A% = A o A. Applying cyclic summation to the second and fourth
term in (27) we get
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O {o2(@0o?(b)A%() - A — 0% (@)’ (c) A%(b) - A)

a,b,c

= O {o2@0o?(h)A%(c) - A — 0% (b)o? (@) A%(c) - A} =0,

a,b,c

using (23) and that .4 is commutative. Similarly, if we apply cyclic summation to the fifth
and sixth term in (27) and use the relation (18) we obtain

O {=02(h)o (A©))A(o @) - A+ 02()a (ADB)) Ao (@) - A}

a,b,c

= O {=02h)o (4(0))80 (A@)) - A+ 02()o (Ab))s0 (A)) - A}

a,b,c

=5- O [~=a?)o(A0))o(A@) - A+ (b)o(A@)o(A)) - A)

a,b,c

-0,

where we again used (23) and the commutativity of .A. Consequently, the only terms in the
right-hand side of (27) which do not vanish when we take cyclic summation are the first
and the third. In other words,

Olo@-A,b-A,c-A)g),

a,b,c

= O {o2@A(e (1) A) - A — %@ Ao (0) Ab) - A). (28)

a,b,c
We now consider the other term in (24). First note that from (20) we have
(b-A,c- Ay =(A)o(b) — A(b)o(c)) - A
since A is commutative. Using first this and then (20) we get

§-(a-A(b-Ac-A)y),
=5-(a- A, (Al0)o(b) — Ab)o(0)) - A),
8(o(a)A(A(c)o(b) — A(b)a(c)) — O'(A(C)O'(b) — A(b)a(c))A(a)) -A
=8{o(@)(A%()a (b) + o (A(0)) A(o (b)) — A%(b)o (c) — o (AB)) Ao ()
— (0(A@©)o2(b) — o (Ab))o?(0)) A@)} - A
=380 (a)A%(c)o (b) - A+ 80 (a)a (A(e)) Ao (b)) - A — S0 (a) A% (b)o (c) - A

— 5a(a)0(A(b))A(0(c)) -A—do (A(c))az(b)A(a) - A
+80(AB))o? () Ala) - A.

Using (18), this is equal to
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so(a)A%(c)o(b) - A + o(@)A(o()A(o (b)) - A — sa(a)A2(bYo(c) - A
— o (@A) A(0(©) - A— A0(0)o(b)Aa) - A+ Ao (b))o?(c)Aa) - A
=380 (a)A%(c)o (b) - A — 8o (a) A% (B)a (c) - A — Ao (c))o?(b)Aa) - A
+ Ao (b))o? () Aa) - A.

The first two terms of this last expression vanish after a cyclic summation and using (23),
and so we get

O 8-{a-Ab-A,c-A)g),

a,b,c

= O [~4(c©)o?b)A@) - A+ A(o(b))o?(©) Ala) - A} (29)
Finally, combining this with (28) we deduce

Ollo@ - A, (b-A,c-A)y), +8la- A, (b-A,c-A)),}

a,b,c

= Olo@-A.(b-Ac- M), + O dla-A(b-A.c-A)),
a,b,c a,b,c

= O {o2@a(c®)A©) - A—o?@A(o(©)AWb) - A}
a,b,c

(;) [=A(0(©))o?(b)A) - A+ Ao (b)) o?(c) Ala) - A)
{ 2@ A0 (b)) Ae) - A — % (@) Ao () Ab) - A}
+ ?'{—A(U(b))oz(a)A(c) A+ A(a(c))oz(a)A(b) - A}
N abc
as was to be shown. O

Remark 8. If A is not assumed to be commutative, the construction still works if one
imposes on A the additional condition that

[a,b]A(c) =0 foralla,b,cec A
Then the mapping x - A: b — x A(b) is again a o -derivation for all x € A. As before A- A
is a left A-module. Then Theorem 5 remains valid with the same proof. We only need to

note that, although A is not commutative we have [a, b] - A = 0 which is to say that

ab-A=ba-A.
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Proposition 9. If A is a commutative C-algebra without zero-divisors, and if 0 # A €
Dy (A) and 0 £ A’ € D, (A) generate the same cyclic A-submodule M of D, (A), where
o:A— Aisan algebra endomorphism, then there is a unit u € A such that

(X, V)oa=u-{(x,y)o,n- (30)

Furthermore, if u € C then

(Mv <'7'>U,A) = (Ma ("'>(T,A/)~

Proof. That A and A’ generates the same cyclic submodule implies that there are u1, us
such that A =u3 A’ and A" = upA. This means that ujus A = u3 A’ = A or equivalently
(uruz — 1)A = 0. Choose a € A such that A(a) # 0. Then (uyuz — 1)A(a) = 0 implies
that uguy — 1 =0 and so u1 and u» are both units. We now use Remark 6 to get

U(“Z) : (X, )7>0,A’ =uz- <.X, }’)cr,A-

Then u = o (u2) /u satisfies (30). Now, if u € C define ¢ : (M, (-,-)5,4) = (M, (-,")5.47)
by ¢(x) = ux. Then

@((-x’ y>0',A) = u(x, y)O‘,A = uz(xv y)o’,A/ = (ux, uy)a,A/ = <§0(x)7 (0()’))(,,A/~ O

Definition 10. Let A be commutative and associative algebra, o : A — A an algebra en-
domorphism and A a o-derivation on A. Then, a (A, o, A)-Witt algebra (or a generalized
Witt algebra) is the non-associative algebra (A - A, (-,-),, o) With the product defined by

(a-A,b-Aga=(0(@ADb) —o((b)A)) - A.

Example 11. Take A = C[t,171], o = id 4, the identity operator on A, A = 4 and 6 =
1. In this case one can show that A - A is equal to the whole D, (A). The conditions
(17) and (18) are trivial to check. The definition (19) coincides with the usual Lie bracket
of derivations, and (22) reduces to twice the usual Jacobi identity. Hence we recover the
ordinary Witt algebra.

Example 12. Let A be a unique factorization domain, and let o : A — A be a homomor-
phism, different from the identity. Then by Theorem 4,

Ds(A)=A- A,
where A = 'd%” and g = ged((id — o) (A)). Furthermore, let y € A and set

" )
x=AG) =" g0<y)=y Q)

Then we have
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0(9)o(x) =0 (gx) =0 (y) —o?(y) = (id — o) (0 (). (31)

From the definition of ¢ we know that it divides (id — o)(g) = g — o(g). Thus g also
divides o (g). When we divide (31) by g and substitute the expression for x we obtain

id — id —
@o(' "(y)) ==2(em).
8 § 8

or, with our notation A = id%",

%a(m)) — Ao (y).

This shows that (18) holds with

s=0(g)/g. (32)

Since A has no zero-divisors and o # id, it follows that Ann(A) = 0, and so (17) is clearly
true. Hence we can use Theorem 5 to define an algebra structure on D, (A) = A - A which
satisfies (21) and (22) with § = o (g)/g. Since the choice of greatest common divisor is
ambiguous (we can choose any associated element, that is, the greatest common divisor
is only unique up to a multiple by an invertible element) this § can be replaced by any
8’ =u - § where u is a unit (that is, an invertible element). To see this, note that if g’ is
another greatest common divisor related to g by ¢’ = u - g, then

_olug) _owolg) o,
oug ug u

8/
and o (1) /u is clearly a unit since u is a unit. Therefore (18) becomes,

A=2_970  No@) = D0 (A ).
u gu u

Remark 13. If we choose a multiple A" = f - A of the generator A = 'd%" of Dy (A), it

will generate a proper .A-submodule A - A’ of D, (A), unless f is a unit. To see this, sup-
pose on the contrary that A - A" = D, (A). Then there is some g € Asuch that g - A’ = A.
Since o # id there is some x € A such that o (x) # x. Then

Ax)=g-Ax)=gf - AW).

Since A(x) # 0 and A has no zero-divisors, we must have gf = 1.
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2.3. hom-Lie algebras
Let us now make the following definition.

Definition 14. A hom-Lie algebra (L, ¢) is a non-associative algebra L together with an
algebra homomorphism ¢ : L — L, such that
<x9 y)L = _()’»x>L,
((d+ o)), (y.2)z), +({dd+ ) (). (z. x)), +((id+ ) (). (x,y)L), =0,

forall x, y, z € L, where {(-,-); denotes the product in L.

Example 15. Taking ¢ = id in the above definition gives us the definition of a Lie algebra.
Hence hom-Lie algebras include Lie algebras as a subclass, thereby motivating the name
‘hom-Lie algebras’ as a deformation of Lie algebras twisted by a homomorphism.

Example 16. Letting a be any vector space (finite- or infinite-dimensional) we put

(¥, ¥)a=0

for any x, y € a. Then (a, c4) is obviously a hom-Lie algebra for any linear map ¢, since
the above conditions are trivially satisfied. As in the Lie case, we call these algebras abelian
or commutative hom-Lie algebras.

Example 17. Suppose A is a commutative associative algebra, o :.4 — .4 a homomor-
phism, A € D, (A) and § € A satisfy (17)—(18). Then since o (Ann(A)) € Ann(A), the
map o induces a map

oA A—>A- A, o:a-A—o(a)-A.

This map has the following property:

(@@ -A),6-A) =0 A ob)-A),

= (c2(@)A(o (b)) — (D) A(0(@))) - A
= (0%(@)80 (A(b)) — o2 (b)so (A(a))) - A
=80 (0 (@) A(b) — a(b)Aa)) - A
§-0({a-A,b-A)yg).

We suppose now that § € C \ {0}. Dividing both sides of the above calculation by §2 and
using bilinearity of the product, we see that Theorem 5 makes A - A with the product (-,-),
into a hom-Lie algebra with (1/5)& as its homomorphism ¢.
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By a homomorphism of hom-Lie algebras ¢ : (L1, ¢1) — (L2, ¢2) we mean an algebra
homomorphism from L1 to L; such that ¢ o ¢c1 = ¢» o @, or, in other words, such that the
diagram

commutes. We now have the following proposition.

Proposition 18. Let (L, ¢) be a hom-Lie algebra, and let N be any non-associative alge-
bra. Let

o:L—-> N
be an algebra homomorphism. Then the following two conditions are equivalent:
(1) There exists a linear subspace U € N containing ¢(L) and a linear map
k:U—> N

such that

poc=koo. (33)
(2) kerp Cker(poc).
Moreover, if these conditions are satisfied, then
(i) & is uniquely determined on ¢(L) by ¢ and ¢,
(i) k|yz) is @ homomorphism,
(iif) (p(L), k(1)) is a hom-Lie algebra, and

(iv) ¢ is a homomorphism of hom-Lie algebras.

Remark 19. It is easy to check that condition (2) can equivalently be written
s(kerg) < kerg.
Proof. Assume that condition (1) holds, and let x € ker¢. Then

9(s(x)) =k(p(x)) =k(0) =0,
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so that x € ker(gp o ¢). Thus (2) holds. Conversely, assume (2) is true. Take U = ¢(L) and
define k: (L) — N by k(¢(x)) = ¢(c(x)). This is well defined, since if ¢ (x) = ¢(y) we
have

x —yekergp Cker(poc)

by assumption. Hence ¢(c(x)) = ¢(c(y)) so k is well defined. Equation (33) holds by
definition of k.

Assume now that the conditions (1) and (2) hold. To prove (i), assume that we have two
linear maps k1 :U; — N and ko : U, — N where U; are subspaces of N with (L) C U;.
Suppose they both satisfy (33). Then

(k1 — k2)(p(x)) = @(s(x)) —9(s(x)) =0

forany x € L. This shows that k1 and &, coincide on ¢(L). For (ii) we use again the identity
(33), and that ¢ is a homomorphism (we denote the product in N by {-,-} to indicate its
non-associativity):

k({fex). o }) =k(e((x. y)2)) =e(s((x. »)1)) = 0((sx). s(),)
{e(s(). 0(sM)} = {k(ex). k(e(M)}.

forx,yelL.
Using (33) and that (L, ¢) is a hom-Lie algebra we get

le). oM} =0((x. y)) =0(—r.x)L) = —{o (), p(x)}

forx,ye L and

O {id+ k) (™), {0, 0@} = O {p@) +k(ex)), 0((v, 2)1)}

X,¥,2 X,¥,2
= O f{e@ +o(s@), 0((v.2)1)}
X,¥,2
=o( O fr+5(), (v.20),) =0
X,¥,2

for x, y, z € L. This shows (iii), and then (iv) is true since ¢ is a homomorphism satisfying
Eqg. (33). O

2.4. Extensions of hom-Lie algebras
In this section we will concentrate our efforts on developing the general theory of central

extensions for hom-Lie algebras, and providing general (co-)homological type conditions
for existence of central extensions useful for their construction.
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If U and V are vector spaces, let Alt>(U, V) denote the space of skew-symmetric forms
(alternating mappings)

UxU—YV.

Exactly as in the Lie algebra case we define an extension of hom-Lie algebras with the aid
of exact sequences.

Definition 20. An extension of a hom-Lie algebra (L, ¢) by an abelian hom-Lie algebra
(a, ¢q) is a commutative diagram with exact rows

0 a L L 0
. l : l : l (34)
l n pr
0 a L L 0,

where (L, &) is a hom-Lie algebra. We say that the extension is central if
Wa) CZ(L)={xeL: (x,L); =0}.

The question now arises: what are the conditions for being able to construct a central
extension L of L? We will now derive a necessary condition for this. The sequence above
splits (as vector spaces) just as in the Lie algebra case, meaning that there is a (linear)
section s: L — L, i.e., a linear map such that pro s = id;. To construct a hom-Lie algebra
extension we must do two things:

e define the hom-Lie algebra homomorphism &, and
e construct the bracket (-,-); with the desired properties.

Note first of all that
proc(x)=copr(x) forxe L
since pr is a hom-Lie algebra homomorphism. This means that
pr(¢(x) —sogopr(x))=0
and this leads to, by the exactness,
S(x)=sogopr(x)+io fs(x), (35)

where f;: L — a is a function dependent on s. Note that combining (35) with the commu-
tativity of the left square in (34) we get for a € a that

toggla)=¢ot(a)=socgoproi(a)+to fyot(a) =to fsoila)
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and hence since ¢ is injective,

Sala) = fso(a). (36)
Also

pr({s(x). s(); —s(x,y)1) =0,

hence

{s).s); =s(x, )L +1ogs(x,y) 37)

for some g5 € AItZ(AL, a), a “2-cocycle.” This means that we have a “lift” of the bracket in
L to the bracket in L for elements x, y in L defined by the “2-cocycle” and the section s.

Using (35), (37) and the linearity of the product we get (we temporarily suppress the
indices L and L in the brackets and the s in g;), fora,b,c € L,

((id+ &) (s@), (s(b), s(0)))
=((id+ ¢)(s(@)),s(b,c) + 1o g(b,c))
=(s(a) + ¢(s(@), s(b, c) + 1o g(b,0))
=(s(@),s(b,c))+(s(a), 10 g(b,0))+(S(s(a),s(b.c))+((s(@)). 10 g(b, )
=s{a, (b,c))+1og(a, (b, c)) +(s(a),togb, o)
—+ (s ogo pr(s(a)) + fs (s(a)), s{b, c)) + (s ogo pr(s(a)) + fs (s(a)), tog(b, c))
=s(a, (b, c))+1og(a, (b, c)) +(s(a), Lo gb, ) + (s 0 c@) + fi(s(@)), s (b, c))
+(soc@ + fs(s(@),Log(b,0))
=s{a, (b,c))+1og(a, (b, c)) +(s(a),0gb,c))+(soca),sb,c))
+{fs(5@). 5, c)) +(s 0 s(@), Lo g(b, ) +(fs(s(@), Lo g(b, )
=s(a, (b,c))+1og(a, (b, c)) +(s(a), Lo g(b, ) +s{s(a), (b, c))
+10g(s(@), (b, c)) +(fs(s@),s(b.c))+ (s oc(a),togb, o))
+(fs(s(@), o g, )
=s{(id + 5)(@), (b, c)) + o g((id+ )(@), (b, c)),

where, in last step, we have used that the extension is central. Summing up cyclically we
get

O g ((d+¢)@), (b,c)r) =0 (38)

a,b,c

since (L, ¢) and (L, ¢) are hom-Lie algebras.
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Picking another section §, we have §(x) — s(x) = (5 — s)(x) € kerpr =¢(a). Since the
extension is central,
0=(5(x).5(»); — (). s(M);
=5(x,y)L +rogs(x,y) —s{x,y)L —togs(x,y)
=@ —9)((x, ¥)) +rogs(x,y) —tog(x, y). (39)

This shows that the condition (38) is independent of the section s. We have almost proved
the following theorem.

Theorem 21. Suppose (L, <) and (a, ¢4) are hom-Lie algebras with a abelian. If there
exists a central extension (L, g)of (L, ¢) by (a, ¢q) then for every section s : L — L there
isa g, € Alt’(L, a) and a linear map f; : L — a such that

f&‘ olL= §a» (40)
& (s(), () = fi([s ). s();) (41)

and
O g ((d+ o)), (y,2)1) =0 (42)

X,¥,2

for all x, y, z € L. Moreover, Eq. (42) is independent of the choice of section s.

Proof. It only remains to verify Eq. (41). We use that ¢ is a homomorphism. On the one
hand, using (35) and (37) we have for x, y € L that

S({s),s);) =S(s((x, y)L) + 1o gs(x, )
=sogopros((x,y)r)+to fios({x,y)L) +sogoprorogs(x,y)
+to fyotogs(x,y)
=sog((x.y)r) +eo fi((s(x).s();)-

On the other hand,
<§os(x),§os(y))i =<so§opros(x)+LofS os(x),socopros(y)+to fs os(y))i

=(soc(x).s05(); =s({s), s(M),) +1togs(sx), ()
=soc((x,y)r) +tog(sx), s(»).

Since ¢ is injective, (41) follows. O

We now make the following definition:
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Definition 22. A central hom-Lie algebra extension (L, &) of (L, <) by (a, cq) is called
trivial if there exists a linear section s : L — L such that

g?('x’y)ZO
forall x,y e L.

Remark 23. Note that by using (39) one can show that the above definition is equivalent
to the statement: “A central extension of hom-L.ie algebras is trivial if and only if for any
section s : L — L there is a linear map s1 : L — L such that (s + s1) is a section and

togs(x,y) =s1((x,y)r)

for all x, y € L.” Indeed, take a section s. Since the extension is trivial there is a section §
such that gz(x, y) =0 for all x, y € L. Inserting this into (39) gives (using that : is one-to-
one)

Logs(x?y)ztogg‘(xv Y)+(§—S)<xa y)L :(§—s)(x, y)L

and putting s1 = § — s gives necessity. On the other hand taking 5 = s + s1 in (39) gives us
sufficiency.

Theorem 24. Suppose (L, ¢) and (a, ¢,) are hom-Lie algebras with a abelian. Then for
every g € Alt’(L, a) and every linear map f : L @ a — a such that

f0,a) =¢q(a) foraca, (43)
g(c).c)=r((x, )L, g(x, ) (44)
and
O g((d+ o)), (v,2)1) =0, (45)
X,¥,2

for x, y, z € L, there exists a hom-Lie algebra (L, ¢) which is a central extension of (L, ¢)
by (av §u)

Proof. As a vector space we set L = L @ a. Define the product () in L by setting
((x.@), (3.5)); = ((x, y). 8(x. ) for (x,a). (y.b) e L (46)
and define ¢: L — L by
¢t a)=(s(x), f(x,a)) for(x,a)eL.

We claim that the linear map ¢ is a homomorphism. Indeed,



J.T. Hartwig et al. / Journal of Algebra 295 (2006) 314-361 337

$((( @), (3, 0));) = S (s )Ly g, ) = (s (s L), f((x, ¥)es g(x, )

and

(¢(x.a). (. B)); =((s ). f(x,a)). (s, fF. D))= (([s(x), s (M), g(sx), s())-

These two e;pressions are equal because ¢ is a homomorphism and (44) holds. Next we
prove that (L, ¢) is a hom-Lie algebra. Skew-symmetry of (-,-); is immediate since g is
alternating. The generalized Jacobi identity can be verified as follows:

G+ ). ((3.b). o))

(x,a),(y,b),(z,0)

- O x+s@ia+ fea), (022,80, 2));

(x,a),(y,b),(z,c)

= O (<X+§(x),<y,Z>L)L, g(x+§(x)’<y’Z>L))=O’
(x,a),(y.b),(z,0)

where we used (45) and that (L, ¢) is a hom-Lie algebra.
Next we define pr and ¢ to be the natural projection and inclusion, respectively:

pr:l — L, prx,a) = x;
tla— L, t(a) =0, a).

That the diagram (34) has exact rows is now obvious. Next we show that the linear maps
pr and ¢ are homomorphisms.

pr((x.a), (v.b));) =pr((x. y)r. g(x. y)) = (x, y)r = (pr(x. a), pr(y. b)), .
<L(a)9 [(b)>i = <(07 Cl), (0’ b))i = (01 O) = L(O) = [((d, b)u)

since a was abelian. This shows that pr and ¢ are homomorphisms. In fact they are also
hom-Lie algebra homomorphisms, because

prod(x,a)= pr(g(x), fx, a)) =g(x)=gopr(x,a)
and
Soula)=¢0,a)= (§(0), £, a)) = (0, §u(a)) =t0¢ala),

where we used (43). This proves that (L, ¢) is an extension of (L, ¢) by (a, ¢4). Finally,
that the extension is central is clear from the definition of : and (46). O
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3. Examples
3.1. A g-deformed Witt algebra
Let A be the complex algebra of Laurent polynomials in one variable ¢, i.e.,
A=C[t, 17 =Clx, yl/(xy — 1).
Fix g € C\ {0, 1}, and let o be the unique endomorphism on .4 determined by
o(t)=qt.
Explicitly, we have
o(f0)=f(gn, for f(r) € A.
The set D, (A) of all o-derivations on A is a free .4-module of rank one, and the mapping
D:A— A,
defined by

o(fO) = f©) _ flan—f®

D(f0) =1 o(t) —1 g—1

for f(r) € A, 47

is a generator.
To see that D indeed generates D, (A), note that, since A is a UFD, a generator of
Dy (A) is on the form

id—o
ged((id — o) (A)’

by Theorem 4. Now, a greatest common divisor on (id — o)(A) is any element of A on
the form czX, where ¢ € C\ {0} and k € Z. This is because gcd((id — o)(A)) divides any
element of (id — o) (A) so in particular it divides (id — o) (t) = —(¢ — 1)t which is a unit
(when g # 1). This means that ¢ — 1 is a gcd((id — o) (A)). Therefore,

— id—
D(f 1) = f(q;)_ 1f(t) _ _|q - clr (F0)

andso D = —ig% is a generator for Dy (A).

Remark 25. Note that =1 D = D,,, the Jackson g-derivative.
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Since D is a polynomial (over C) in o, D and o commute. Let (-,-),, denote the product
on D, (A) defined by

(f-D,g-D)o=((f)-D)o(g-D)—(0(g)-D)o(f D) (48)

for f, g € A coming from (19). It satisfies the following identities:

(f-D.g-D)o=(a(f)D(g) —0a(e)D(f))- D, (49)
(f-D,g-D)og=—(g-D, f- D)o, (50)

and

(c(H+f)-D.(g-D,h-D)s) +((c(g)+g)-D.(h-D, f-D)g),
+((c(h)+h)-D,(f-D,g- D)), =0, (51)

forall f, g, h € A. The identities (50) and (51) show that D, (A) is a hom-Lie algebra with
1D (A) > Ds(A) cif-Di>oa(f)-D

as its homomorphism. As a C-linear space, D, (A) has a basis {d,: n € Z}, where

d,=—1"-D. (52)
Note that
o(—1")=—¢"1", (53)
which imply
s(dn) =q"dy. (54)
Note further that
D(~1") = % — n)gr", (55)

where {n}, for n € Z denotes the g-number

q" -1
-1

{n}q =

Using (49) with f(r) = —¢" and g(r) = —t' we obtain the following important commuta-
tion relation:
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(o, di)o = ((=q"1") - (=Hlgt') = (=4't") - (=tnlgt")) - D

( 19" —1 L _j')_(_tn+l)_D
q— Z

6] C]

-1

dny1 = ({”} —{l}q) n+l» (56)

for n,l € Z, where the bracket is defined on generators by (19) as
(dn,d))o = qndndl - qldldn-

This means, in particular, that D, (A) admits a Z-grading as an algebra:

Dy (A =EPC-d;.

ieZ

Remark 26. If ¢ = 1 we simply define D to be ¢ - 9 where 3 = %, the ordinary differential
operator. Then 9 generates Djq(.A) even though Theorem 4 cannot be used. The relation

(dn, d1)o = ({n}g — {D}g)dnti
then becomes the standard commutation relation in the Witt algebra:
(O, ) = (n — D)Op41,
where 9,, = —t" - D.
It follows from (50) that
(dn,di)o = —({d1, dn)s, (57)

and substituting f(r) = —t", g(t) = —t' and h(r) = —¢™ into (51) we obtain the following
g-deformation of the Jacobi identity:

(¢" + 1) {dn. (di.dm)o), + (¢" + 1){dr, (dm. dn)s), + (4" + 1) (dm, (dn. di)o),
=0, (58)

forall n, [, m € Z. Hence,

Theorem 27. Let A = C[r, t~1]. Then the C-linear space

Do (A) =P C-dy,

nez
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where D = —ig%‘l’, d, = —t"D and o (t) = gt, can be equipped with the bracket multipli-
cation

()0 1 Ds (A) X Do (A) = Dy (A)
defined on generators by (19) as
(dn,dm)o = q" dndm — q" ddhy
with commutation relations
(dn, dm)o = ({n}g — {mYq)dn-+m-
This bracket satisfies skew-symmetry
(dn,dm)o = —(dm,dn)o

and a o -deformed Jacobi-identity

(qn + l)<dn9 (di, dm)cr)ﬂ + (611 + 1)(dla (dm, dn><r>(r + (qm + l)<dm7 (dn, dl)rr)(, =0.

Remark 28. The associative algebra with an infinite number of (abstract) generators
{d;: j € Z} and defining relations

q"dndy — q" dndy = ({n}q - {m}q)dn—&-mv n,méeZ,

is a well-defined associative algebra, since our construction, summarized in Theorem 27,
yields at the same time its operator representation. Naturally, an outcome of our approach
is that this parametric family of algebras is a deformation of the Witt algebra defined by
relations (1) in the sense that (1) is obtained when g = 1.

3.2. Non-linearly deformed Witt algebras

With the aid of Theorems 4 and 5 we will now construct a non-linear deformation of the
derivations of A = C[t, r~1], the algebra of Laurent polynomials. Take any p(r) € A and
assume that o () = p(¢). In addition, we assume o (1) = 1, since if this is not the case, we
would have had o (1) = 0 because A has no zero-divisors and so o (1) = 0 would imply
o = 0 identically. This leads us to

l=cW)=0(t-tH=0o(t™?) = o H=00)™
implying two things:

(1) o(¢) must be a unit, and
(2) o (¢t~ 1) is completely determined by o (¢) as its inverse in A.
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Hence, since o (¢) is a unit, o (1) = p(t) = qt*, for some ¢ € C\ {0} and s € Z. We will,
however, continue writing p(¢) instead of gz° except in the explicit calculations.

It suffices to compute a greatest common divisor of (id — o) (A) on the generator ¢ since
o (1Y) is determined by o (r). Furthermore, any gcd is only determined up to a multiple of
a unit. This gives us that

g=n""id— o)) =0t - p) =0 (1 - gr)

is a perfectly general gcd and so Theorem 4 tells us that

_ id—o _ —k+1id_‘7=m—k id—o
n~ k=1t — p(1) t—qts 1—grst

is a generator for D, (A).
Two direct consequences of this is that, firstly, if r € Z>g then

-1
1— qrtr(s—l) r
ry _ —k+r _ 1 (s—D)l+r—k
D(t)_n't 1—qts_1 —”Z‘”
=0

r—1 r—1
— nt*k Zp(t)ltrfl — nt*k Zp(t)rflflt[‘l’l
=0 1=0

and secondly, if r € Z_g then

— (s=1) _ g—r—r(s=1)
D(tr) =77-l‘_k+r1 qrtr g :_n.t—k—&-rqrtr(s—l)l q L
1—gqrs1 1—grs—1t
—r—1 —r—1
=—p- t—k+rqrtr(s—l) Z qltl(s—l) = Z qr+lt(r+l)(s—1)—k+r_
1=0 =0

The o-derivations on C[t, 1] are of the form f(¢) - D for f € C[t,¢~1] and so, given
that 2 is a linear basis of C[z, ] (over C), —tZ - D is a linear basis (over C again) for
Dy (C[t,t717). We now introduce a bracket on D, (C[t, #1]) in accordance with Theo-
rem 5 as we did in the previous section. Once again,

(=t"-D,—t"-D) = (o(—1")D(—1") —o(—1")D(—1"))D.

o

To continue we consider three cases (1) n,m >0, (2) n >0, m < 0,and (3) n,m < 0.
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Case 1. Assume n, m > 0. Thus the coefficient in the bracket is

o (") D(i™) — o (") D(1")

m—1 n—1
= P(l)n . n[*k Z p(t)mflfltl+l _ p(t)m . nt*k Zp(t)nflfltﬁ‘rl
1=0 1=0
m—1 n—1
=7 ( Z p(t)n+m—l—ltl—k+l _ Z p(t)n-i-m—l—ltl—k-ﬁ—l)'
1=0 1=0
To re-write this we use the “sign function”
-1 ifx <0,
sign(x)=30  ifx=0,
1 if x >0.

So,

m—1 n—1
77( Z p(l‘)n+m_1_ltl_k+1 _ Zp(l)n+m_1_ltl_k+l>

=0 =0
max(n,m)—1
— nsign(m —n) Z p(t)n+mflfltlfk+1
[=min(n,m)
max(n,m)—1
— nsign(m —n) Z qn+m—1—lt(n-i—m—l)s—(s—l)l—(k—l)
I=min(n,m)
giving that (for n, m € Zxq)
max(n,m)—1
(dn,dn)o =nsignn—m) Y ¢""" it oi-a-n. (59)
[=min(n,m)

Remark 29. Note that if we take k =0, s =1 and n = 1, the right-hand sum in (59)
contains only the generator d,,,, multiplied by the coefficient

max(n,m)—1
sign(n — m)g" 1 Z (q_l)l
[=min(n,m)
) _ (q—l)max(n,m) o (q—l)min(n,m)
=sign(n — m)g" "1
an( )q -
max(n,m) __ ,min(n,m)
=sign(n — m) a a

qg-—1
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= sign(n — m)({max(n, m)}q — {min(n, m)}q)
= {n}q - {m}q

This means that commutation relation (59) reduces to relation (56) for the ¢-deformation
of the Witt algebra described in Section 2.1.

Case 2. Now, suppose n > 0 and m < 0. We then get the bracket coefficient

o(1")D(i") = (") D(")

—m—1 n—1
=—n- qntns Z qm+llt(m+ll)(s—l)—k+m —n- qmtms Z qlzt(s—l)lz+i1—k
11=0 1>=0
—m—1 n—1
— _77( Z qn+m+llt(m-‘rll)(s—l)—k-‘rm-i-ns + Z qm+lzt(s—l)lz+n—k+ms).
11=0 Io=0

We now show that there is no overlap between these two sums. Knowingthat 0 </lp <n—1
we consider the difference in exponents of ¢:

m+I))Gs—-—1D—k+m+ns—(6—Db—n+k—ms
=@—-DU1—-D)+mGs—D+A—-s)m+(s—1n
=@ —-D01—1l2+n)
and this is zero (for s #1)whenn =1, —l1. But,n =1, — I3 <n—1—0=n — 1 which

is a contradiction and hence we cannot have any overlap. Hence, we see that the bracket
becomes

—m—1 n—1
(dn, dm)o = 7)( > "M A1 tnsm—k + qu+ld(sl)l+n+msk>~ (60)
=0 =0

Case 2. By interchanging the role of » and m so that m > 0 and n < 0 we get instead
o (i")D(r") — o (") D(")
m—1 —n—1
B n( Z qn+llt(s71)ll+m+nx7k + Z qm+n+lzt(n+lz)(s1)+n+msk>
11=0 1>=0
so the coefficient for the bracket becomes

m—1 —n—1
<dna dm)a =N ( Z qn+ld(s—1)l+m+ns—k + Z qm+n+ld(n+l)(s—l)+n+ms—k>- (61)
=0 =0
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Remark 30. Ifwe putk =0, s =1and n = 1in Case 2 and 2, we once again get the single
generator d,,,, multiplied with

—m—1

l n—1 ) 1_q_m 1_qn
1=0 1=0 4 q
_ o gpizdt mlzdt a4
l-g¢q l—gq l1—gq
= {n}y — {m}q,

just as we would expect from the case in the previous section.

Case 3. Both n,m < 0. This leads to

o(t")D(t") — o (") D(1")

—-m—1 —n—1
=—- qntns Z qm+llt(m+11)(s—l)—k+m + +7 .qmtms Z qn+12[(n+12)(s—1)—k+n
11=0 1p=0
(—m—l —n—1
_ +m+l ,(m+n)s+(s—1)—k n+m—+l, (n+m)s+(s—1)—k
= 3 g 3 g )
1=0 =0

This leads to a bracket coefficient resembling that of Case 1, namely

max(—n,—m)—1

(dn,dm)e = n Sign(” —m) Z qn+m+ld(m+n)x+(s—l)l—k- (62)

[=min(—n,—m)

We can now, from (32), calculate § to get

1,5k _ 8,5(s=1) s—1
5= 0@ _nrd-gr") D ) (Ta
4 N~k (L —grh =

This means, by the definition of 8, that D and o span a “quantum plane”-like commutation
relation

s—1
Doo =gkk6—D Z(qtsfl)r -goD.
r=0

To get a hom-Lie algebra it is enough for § to be a (non-zero) complex number and this
can be achieved only when s = 1, that is, when the deformation is linear (i.e., when o
homogeneous of degree zero).

Theorem 5 now tells us what a generalized Jacobi identity looks like
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n,m,l

O (q"(dns,<dm,dz> A “Z ) (dnldm, di)o ), ) 0.

The hom-Lie algebra Jacobi identity (s = 1) becomes

S 4"+ Ve, ), =0

n,m,l

We summarize our findings in a theorem.

Theorem 31. Let A = C[r, r~1]. Then the C-linear space

D, (A =EPC-d,,
nez
where
D = pr id—o ’
t—qts

d, =—t"D and o (t) = qt*, can be equipped with the bracket product
()0 1 Dy (A) X Do (A) = Dy (A)
defined on generators by (19) as
(dn, dm)o = q" dnsdm — q" dsdn

and satisfying defining commutation relations

max(n,m)—1
(dn,dm)s =nsign(n —m) Z qn+milild5(n+m—l)—(k—l)—l(S—l)
[=min(n,m)
forn,m > 0;
—m—1 n—1
(dn,dm)e = 77( Z 61"+m+ d(erl)(s D+ns+m—k T Zq mH d(s Di+n+ms— k)
=0 =0

forn >0, m <0;

m—1 —n—1
(dn,dm)o =—1 < Z qn+ld(s71)l+m+ns7k + Z qm+n+ld(n+l)(51)+ﬂ+msk)
=0 =0

form >0, n <0;
max(—n,—m)—1

(dn,dm)e = nSign(n —m) Z qn+m+ld(m+n)s+(s—l)l—k forn,m < 0.
[=min(—n,—m)
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Furthermore, this bracket satisfies skew-symmetry
(dm dm><r = _<dm7 dn)a,

and a o-deformed Jacobi identity

O (q"(dm,<dm,dl> +q" " 1>Z dn{dm, di)o ), ) 0.

n,m,l

Remark 32. The associative algebra with an infinite number of (abstract) generators
{d;: j € Z} and defining relations

Eqg. (59) forn,m >0,
Eqg. (60) forn >0, m <O,
Eq. (61) form >0, n <0,
Eq. (62) forn,m <0

qndnsdm - qmdmsdn =

is a well-defined associative algebra, since our construction yields at the same time its op-
erator representation. Naturally, an outcome of our approach is that this parametric family
of algebras is a deformation of the Witt algebra defined by relations (1) in the sense that
(1) is obtainedwheng=1and k=0,s=1,n=1.

3.2.1. Asubmodule of D, (C[z, 1))

We let, as before, A = C[r, r~1], the algebra of Laurent polynomials, and o be some
non-zero endomorphism such that o (r) = p(¢). In the previous section we showed that
any greatest common divisor of (id — ') (A) has the form n=2*=1(t — p(1)) = n~ 1tk (1 —
gt*~1) for k € Z and non-zero n € C. As described in Remark 13, this means that

id—o

D:n—l,tk

generates a proper cyclic .A-submodule M of D, (A), unless p(¢t) = Bt for some g € C.
As above we calculate § using (32) and we find

5 = gDk
which means that D and o satisfy the following relation
Doo =gt VX5 o D.

We set

—t"D.

§.1
I
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Before we calculate the bracket, we note that D(¢) = nt —*+1(1 — gr*~1), and

0 Id[; o (tr) — ntr—k (1 _ qrt(s—l)r)‘

The coefficient of D in the bracket (d,, d,,)o then becomes

O(Z‘n)Dl‘m _ O(Im)Dln — nqntns—i-m—k (1 _ qmt(s—l)m) _ nqmtms-i-n—k (1 _ qnt(s—l)n)

ns+m—k __ mtmernfk

=nq"t nq

which means that

<Jn, d~m>o = nqmgms+n7k - angnermfk,

where

(dy, d~m>o' = qnd~nsd~m - qmgrnsjn

by (19). Putting a = —t", b = —t" and ¢ = —¢' in (22) with § = ¢*+¢~V¥ and A = D, we
get

@l((—q”t”D, ("D, —1'D) ) +q*t" V¥ —"D,(—"D, —1'D) ) )
n,m,

= O (¢"(dns. . d1)o), +q“ 1 ¥ dy, (., d))o),) = 0.

nm,l
We summarize the obtained results in the following theorem.
Theorem 33. The C-linear space
M=EDC-d; withd;=—1'D
ieZ

allows a structure as an algebra with bracket defined on generators (by (19)) as

(dn, dp)o = qnd~ns‘zm - qmjmsjn

and satisfying relations

(C?nv dm>0 = nqm‘zms+n—k - nqnjns—&-m—ks

with s € Z and n € C. The o -deformed Jacobi identity becomes

O (qn<gns’ (C?mv dl)ﬂ)g + qkt(s_l)k(gna (dm, dl><7>a) =0.

n,m,l
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Remark 34. The only possible way to obtain a Z-grading on M with the bracket (-,-), is
when k =0 and s = 1 in the above theorem.

Remark 35. By performing a change of basis and considering instead d, = —t"**D in
the definition of d,, we can evade the use of k altogether. Hence we see that the k-shifted
grading is something resulting from a choice of basis for M.

Remark 36. The associative algebra with an infinite number of (abstract) generators
{d;: j € Z} and defining relations

qndnsdm - qmdmsdn = nqmdms—i-n—k - nqndns+n1—ka n,méeZ,

is a well-defined associative algebra, since our construction, summarized in Theorem 33,
yields at the same time its operator representation. It is interesting that, wheng =1, k=0
and s = 1, we get a commutative algebra with countable number of generators instead of
the Witt algebra.

3.2.2. Generalization to several variables
We let the boldface font denote an Z-vector, e.g.,

kK= (k1,k2,....kn), ki€Z.

Consider the algebra of Laurent polynomials in z1, z2, ..., z,

I R s17~ Clza, ..., zp,u1, .., U]
A—(C[Zl ,Z2 ,...,Zn ]:
(zaur — 1, ..., zyu, — 1)
and let
_ S1,1 S1n . Su1 Spn
0(z) =quzy -z s 0@ =qg,2

Notice that o is determined by an integral matrix
S=1[58;]

and the complex numbers g;, . A common divisor on (id — o) (A) is

-1.G
g:Q 1Z11...Z}?"
and so the element
D id—o
- Q Gy Gy
Zl Zn

generates an .A-submodule M’ of D, (A). Using these D and o we calculate § to be (by
formula (18))
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($51.1-1)G1+821Go++S5,1G
a_qgl qZGnn n, n,.-Z
— ,G1 1 8
=4z qzn SRR S
where
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Sl,n Gl+52,n GZ+"'+(Sn,n *l)Gn
n

Sk =814G1+ S24Go+ -+ Sk — DG+ -+ + S kG

We also introduce the notation a, (1) = Y"7_; S; ;. Now,

o(z)" -

and so,

We now put d| = dj, ..,

Sl,nll+"'+Sn,nln

l l 1, S1ali++S8u 1l
U(Zn)nzqzji.qzr,izl mimoL. n
_ 0‘1(') a, (1
— qzl qzn ,Znn()
|d — 0 I
—_— —_— 1 DECEEY l
)= 01 G, (e a)
2tz
I [}
e — U(Zl)ll o (2l
= Q c.
zl “Zn
11 l / al(l) o ()
_ Q n qzl 47,2y “Zn"
G1 G,
29 Zn
_ hh— In—Gn (1 ar()=l oy
- _QZ]_ T (qzi qznzl : Znn() "= 1)

= —lel-~~z£?D and calculate the coefficient of the bracket

{dk, d)) with the aid of Theorem 5 as before:
e D) ol Dl )
Y !
+ qu qzn 0!1(') _Zgn(l)zkrGl . ._Zﬁn_Gn (qél qécn a1 (K)—ky _Zzn(k)—kn _ 1)
qu1+h qéc’,lﬁl,l a1(K+er(D—G1 | _Zgn(k)mn(l)—cn
+ Qqﬁll qé,: a1(K)+1—G1 .Zzn(k)‘l’ln*Gn
+ qu1+ll qZIHH a1(K)+a1(N-G1 .Zgn(k)Jra,,(l)fG,,
_ qu qz,’; 0!1(|)+k1 G1 | 'Zz"(l)_'—k”_
_ qull ‘12 og (K)+H1— _Zgn(k)ﬂn— n_ Qqéll . _qé,;ziq(l)JrkrGl . .Zgn(l)"l‘kn_Gn'

This gives us
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(k. di)o = Qg2 "'Qé:da1(|)+k1—Gl ..... atn () +hn—Gpy

—Qq

Using the & we calculated before we can deduce a deformed Jacobi identity as

O (lell = 'Qf,’f(dal(k) ..... an®): (di,dn)o), + qg

k,lh

from which we see that we get a hom-Lie algebra if all §; are zero, that is, if

S11-1 S1,2
S2.1 So2—1
Sn,l
which means that

S11—-1  S12

82,1 Sro—1
ker .

Sn,l

dotl(k)+ll

T
Sl,n
SZ,n

Spn—1

Spn—1

In this case we get the deformed Jacobi identity

O (g% gb(day.....anto)- (. dn)s), +45t -

k,lh

We summarize the obtained results in the following theorem.

Theorem 37. The C-linear space

=Pc- 4

lezr

spanned by d; = —Zl zn D, where D is given by

.....

Gy 01
4"

an

on (k)+1n *Gn :

G,
G

G

(dk. (di. dn)o),) =

can be endowed with a bracket defined on generators (by (19)) as

(dk, di)o —qzl 'qf,;' )

and satisfying relations

Op (k)dl - qél

Clz’j,dal(l) ..... an(hdk

-2 di. (d1. dn)s),) =

351
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(k. di)o = Qg% - " doy () +k1—Gy...otn () 4Gy

k1 k
— 04z 4" doy ()+11—G1, ..ot (K)+ — G -

The bracket satisfies the o -deformed Jacobi identity

kt?h(qzl c @ Aoy (0. an () (1 o), + G5 ~qZGn"z‘il -z (di, (di, dn)o),) =0.

Furthermore, a hom-Lie algebra is obtained if the eigenvalue problem
S-G=G

(where “.” means product of matrices) has a solution G € Z". We then get the Jacobi-like
identity

klh(qz1 @5 (day k)....an )+ (1 dn)s), + a5t S (dk. (di. dn)s),) = 0.

4. A deformation of the Virasoro algebra

In this section we will prove existence and uniqueness (up to isomorphism of
hom-Lie algebras) of a one-dimensional central extension of the hom-Lie algebra
(D, (C[t,171)), ¢) constructed in Section 3.1, in the case when ¢ is not a root of unity.
The obtained hom-Lie algebra is a g-deformation of the Virasoro algebra.

4.1. Uniqueness of the extension
Let A= C[r,7 1], o be the algebra endomorphism on A satisfying o (r) = gz, where
0,1+ g € C isnot a root of unity, and set L = D, (A). Then L can be given the structure

of a hom-Lie algebra (L, ¢) as described in Section 3.1.
Let

. t ~ pr
0—— (C,idc) — (L, ¢) (L,s) 0

be a short exact sequence of hom-Lie algebras and hom-Lie algebra homomorphisms. In
other words, let (L, &) be a one-dimensional central extension of (L, ¢) by (C, idc). We
also set c=((1).

Choose a linear section s:L — L and let g, € Alt?(L,C) be the corresponding
“2-cocycle” so that (37) is satisfied for x,y € L. Let {d,} denote the basis (52) of L.
Define a linear map s": L — L by

) s(dy) ifn=0,
S(dn)z{s(dn)— Logy(do,d )c ifn#0.
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Then s’ is also a section. Using the calculation (39) and the commutation relation (56) we
get

togy(dm,dp) =10gs(dpn,dy)+ (s _sl)((dm, dn)L)
{Logs(dm,d,,) ifm+n=0,

10 85 (s dn) + Tt 0 g, (do, dyrgn) i m 4+ 0,

In particular we have gy (do, d,) = 0 for any n € Z. According to the calculations in Sec-
tion 2.4, the “2-cocycle” g,» must satisfy (38) for any a, b, ¢ € L. Thus we have,

;9 g ((id+ 6)(dv), (dr, dw)1) =0

for k, 1, m € Z. Substituting the definition (54) of ¢ and using the commutation relation
(56) again we get

kglb (1+4%)(11)g — tm}g)atk,1 +m) =0, (63)

where we for simplicity have put a(m, n) = gy (d,, d,) form, n € Z. Using (63) with k =0
and that a (0, n) = 0 for any n € Z we obtain

(1+4¢"){m}ga,m) + (1 + q™)(—{l}q)a(m,1) =0,

or, since a is alternating,

qm_l ql_l
1+¢)T—=+1+q" I,m)=0
(@+) T+ @) L= Jatm =0
which simplifies to
l+m_1
24— aum)=o0.
qg-—1

This shows that a(Z, m) = 0 unless [ +m = 0. Setting b(m) = a(m, —m) we have so far

<s/(dm)v S/(dn))i = ({m}q - {n}q)s/(dm+n) + dm-+n,0b(m)cC.

Using (63) withk =—n — 1,1 =n, m =1 we get

n_ _ ,—n-1
(1+ q—n—l)—"q —La(n—1n+ D+ (1+¢") T =L—atm.—m)
—n—1 n

+(1+4)qq%q

1 a(l,-1)=0,
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or, after multiplication by ¢"+1,

q(1+q"™)n—1),b(n+1) = (1+¢"){(n+2}4b(n) — (L +g){2n + 1},b(1).
This is a second order linear recurrence equation in b.

Lemma 38. The functions b1, b, : Z — C defined by

—m

q
1+ g™

ba(m) =q~"{2m},

bi(m) = {m —1}g{m}g{m +1}4,
are two linear independent solutions of (64).
Proof. Substituting b1 for b in (64) the left-hand side equals

q{n = 1gq ™" Hngfn + Ly (n + 2},
while the right-hand side becomes

{n+ z}qq_n{” —1}4{nlgin+ 1}, — 0.

(64)

These expressions are equal. To prove that b; is also a solution requires some calculations:

gln —1(1+ g7 ) 2n + 2}y — (n +2}4 (1 + g ") {2}, + (20 + 1}, (L + g7 1){2),

= (in}g _qn—l)(q +a")(12n), + g2 4 g
—((n}g + 4" @+ D)1+ ") 20}y + (120} +¢*") 1+ g A +9)
=(2n)y (g (g +a™") —a" —a " —{n}g(L+q7") = (g + Dg" —1—q +2
+a+q )+ @+ (glnlg +q Yy —q" —q +1+q7")

g+1

:{Zn}q(q”—l—q"—q"(q+1)—1+2)+q2nq_l

(_qn + qn)

q2n -1

_ _n 2nq+1
=1 (@ +1(=¢") +4q

ﬁ(_qn + qn)

_q+1

- l(qn _q2n—n) =0.

It remains to show that b1 and by are linear independent. If

Ab1 + uby =0,

then evaluation at m = 1 gives ug (1 + ¢) = 0 so u = 0. Since b1 is non-zero, we must

have A=0also. O
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Thus we have
b(m) = aby(m) + Bba(m)
for some «, 8 € C. In terms of g, this means that
85 (. dy) = 8 yn.0(ctb1(m) + Bba(m)).
Define now yet another section s” : L — L by
s"(dw) = 5"(dn) + m,0BC.
Then
10 8y (dm,dn) =0 8y/(dm, dn) + (" — ") ((dm, dn) 1)
= Smtn.0(ab1(m) + Bb2(m))c— ({m}y — {n}g)8m1n.08C

= 8m+n,0(ab1(m) + Bba(m) — ﬂqim{zm}q)c
= 5m+n,0abl(m)cv
where we used that {m}, — {-m}, = ¢7"{2m},. If « =0 we have a trivial extension.

Otherwise we set ¢’ = 6aC.
It remains to determine the homomorphism ¢. Using (35) we have for x € L,

Sx)=s"ogopr(x) +o for(x)
for some linear function f,» : L — C. To determine f,, first use (36):
for(©) = fyr (1(6)) = idc (6ar) = Bev.
Hence
éch)y=c.
Next, we use (41) in Theorem 21 to get
For((s"(@dm). s" (dn)); ) = g5 (S (dm). 5 (dn)).
By (37) we see that

(S//(dm), S//(dn)>i = U((dm’ dn)L) + 1o gy (dm, dp)
= ({m}q - {n}q)s”(dern) + o gy (dm,dn)
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and so

({m}q - {n}q)fs” (s”(dern)) + for (L o g5 (dm, dn)) = qm+ngs” (dm > dn)

which is equivalent to

({m}q — {n}q) fr (5" (dmsn)) = (¢ " — 1) gy (d, d)

for all integers m, n. But the right-hand side is identically zero (g,» being a multiple of
8m-+n.0)- Hence, taking m # 0 and n = 0 we get fy#(s”(dy)) = 0 for all non-zero m. But
if we take m =1 and n = —1 we also get fy(s”(dp)) = O because {1}, — {—1}, =1+
g~1 s 0since g is not a root of unity.

Putting L > L, := s”(d,) we have proved the following theorem.

Theorem 39. Every nontrivial one-dimensional central extension of the hom-Lie algebra
(Do (A), ¢), where A = CJz,t~1], is isomorphic to the hom-Lie algebra Vir, = (L, $),
where L is the non-associative algebra with basis {L,: n € Z} U {c} and relations

~

(c,L); =0,

—m

q
(L, Ln)i = ({m}q - {”}q)Lm-‘rn + 6m+n,06(Tqm){m - 1}q{m}q{m + 1}qca

and ¢: L — L is the endomorphism of L defined by
SLn)=4q"L,,  S(0)=c.
4.2. Existence of a non-trivial extension
We now proceed to prove the following result. Let A = C[¢, 1.
Theorem 40. There exists a non-trivial central extension of (D, (A), ¢) by (C, idc).

Proof. We set L := D, (A) for brevity and define g : L x L — C by setting

q—m
g(dm,dy) = 3m+n,OW{m —1)y{imly{m +1},, form,nelZ,

and extending using the bilinearity. We also define a linear map f:L & C — C by
f(x,a)=a forxelL, aeC.

Our goal is to use Theorem 24 which means that we have to verify that g and f satisfy the
necessary conditions. First of all, using that {—n}, = —¢~"{n},, we note
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—m

1+m

n

1+4qg7"

g(dm, dy )—5m+n0 {m_l}q{m}q{m+l}q

= 8ntm,0 {—n— 1}q{_n}q{_n + 1}q

—n

—an+m,olq+—qn{n — 1y lnlgln + 1}y = —g(dy. dn).

This shows that g is alternating. That (43) holds is immediate. To check (44) let m,n € Z.
Then

8(s@n), 5(dn)) = g(q"dm.q"dn) = q" " g(d, dn)

q
m+n3m+n,0m{m -1}y {m},(m + 1},

=q
=g(dm,dn) = f((dnudn)La g(dm, dn))

It remains to verify (45). By trilinearity it is enough to assume that (x, y, z) = (d, d;, d;n)
for some k, 1, m € Z. Moreover, if k + m + [ # 0 then (45) holds trivially due to the Kro-
necker delta in the definition of g. Thus we can assume k + m + [ = 0. We then have

O g((id + ¢)d, (d, dm)1)
k,,m

= ;9 (14 ¢5) (11 — tmdg) g (di, dim)

= ({l}g — {—k = Ig)q*{k — L {k}g {k + 1)
+ ({—k =g — (k}g)q {1 — Lg(Dgll + 1)
+ (tkg — {)g) " =k — 1 = Ly {—k — D}y {—k — 1 + 1},
= —{—k —I}g(q "k — B {klgtk + 1}g — ¢ 7' {l — L {1} {1 + 14
— (k) — )g)g" T~k — 1 = L}~k — 1 +1},)
+q kY (g (q'tk — Vg lk + 1)y — g" 1 — L1 + 1))

The second factor in the first term equals

q Mk = Vg lkYg{k + 1)y — g1 — Ly {1} {1 + 1}
— (k) — Wg)ad" =k =1 = Dy {~k -1+ 1),
=g (tklg — ¢ V) kY (kY + %) — a7 (Ik}g — 4" H)ilg (1) +4')
_ ({k}q _ {l}q)qk+lq—2k—2l({k_|_l}q +qk+l)({k+l}q _ qk+l—l)
=q¢ MRS+ (1—g )k — ¢ Mkl — g7 - (- W+ 4" M
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= (K} = ) (a7 (kg +q"(1g) ((N)g + 4" (K)g)
+(1—g Yk+1y—g"t"
=(1—g k2 — " Mk — (1= g )02 +4' 7MY,
— g T R D (L4 ") (kY — (1g) + 4" D)y — q'{k)y)
— (kg = 1) (L =g Mk +1)g = ¢"7)
=kl (1= g ") (kg — k+1}g) — g+ ")
—De((A =g (g — tk+1}g) =" + 4"
—q K D (L + ") (kg — {1Yg) + 4" (1)g — q'1K)y).

The first of the three terms in the last equality above is equal to

(1—6]_1)({k}q o {k+l}q) _qk—l +qk+1—l

qk_l_qk+l+1_qk_1

k+-1_ o
1 +q .

=47 (¢ -1

Similarly the second term vanishes. Using that {a + b}, = {a}, + q“{b}, we see that the
whole expression is equal to
g kgD (g tk = Vglk + 1)y — "1 = 1yl + 1),
+{—k = Dg (L + ") (kg — {1}g) + 4" (1)g — 4" {K)y))
=q kY (D (¢' ()2 + g* (1 — g ) ikly — g™ 7T)
— " (2 +q' (1 —q )iy —d* 1) — tk+ 1y ({k)g — 1}g))
=g kY {1g (q' (k)2 — " — g2 + ¢ — (k4 1y (k) — 1))
=q k) gtk + Dy (g kg — gDy — (kY + (1))
= {k}{}gtk +1}g ({1 + k}g — {k +1}4) =0.

Thus (45) holds for all x, y, z € L. Hence, by Theorem 24, there exists a central extension

Of (Ls g) by (as §a)
Suppose this extension is trivial. Then by Remark 23 there is a linear map s1 such that

g(dy, dy) =Sl(<dma dn)L),

or

—m

8m+n,01£{|_7{m - 1}q {m}q{m + 1}q = sl(dm+n ({m}q - {n}q))»
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for m,n € Z. Taking m = 1 and n = —1 gives s1(dp) = 0. On the other hand, setting
m =2 and n = —2 yields s1(dp) # 0. This contradiction shows that the extension is non-
trivial. O

Remark 41. The coefficient in the central extension part in Theorem 39is 1/6 - g(d,, dy,),
where g(d,,, d,,) is from the above theorem. This factor 1/6 is easily obtained by rescal-
ing c. The reason for this factor in Theorem 39 is that for the classical undeformed Virasoro
algebra one usually rescales by a factor 1/12 in the central extension term. Now by taking
g =1 in Theorem 39, we thus get the classical undeformed Virasoro algebra including the
usually chosen scaling factor 1/12.

Remark 42. If ¢ is an automorphism of A and A is a (o, 7)-derivation on A we can still
define a product on A - A by

(@ Ab-Agra=(c(@-A)ob-A)—(a(b)-A)o(a-A)
= (0 (@)A(b) — o (b)A(a)) - A.

For example, if we take A = C[t,171], o(r) = gt and T = o~ 1, and the symmetric
g-difference operator

T —

1.
- o () flq 2 f(qt)y
—q g t—q

A=

then our bracket will be

qnfm _ qun
gt =l mlgdugn, (85)

(dn,dm) = qndndm - qmdmdn =

where d, = —t" - A and [k], = (¢* —g%)/(g — ¢~1) is the symmetric g-number. This is
easily calculated by direct substitution. The right-hand side of this commutation relation
(65) coincides with the right-hand side of the defining relations (1) in the ¢-deformation
of Witt algebra considered in [1,14], but the left-hand side of the bracket turns out to be
slightly different. When ¢ — 1 the defining relations for the classical Witt algebra are
recovered in both cases.
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