
Chaotic Key Generation using
Elliptic Curves

Daniel Larsson

Abstract

In this short note we propose a method, generalising [3], for key generation using
the group structure of an elliptic curve over a finite field, in conjunction with a
chaotic map.

1 Introduction

In [3], Reyad and Kotulski introduced (and analysed statistically) a method for
constructing pseudo-random numbers by using chaotic maps and the addition
law on elliptic curves. A slight generalisation of this method was used in [2] to
construct keys for use in biometric encryption. In this paper we significantly
generalise the Reyad–Kotulski method by using n-dimensional chaotic maps and
more points on the elliptic curve. As a consequence we can construct several
keys in one go.

It is well worth remarking from the start that due to space limitations we
do not present any numerical examples as even the simplest, non-trivial, such
would invariably fill out significant portion (if not more) of the allotted space.

2 Discrete dynamical systems and chaotic maps

Let Y ⊆ Rn and let Ξ : Y → Y be a map. A discrete n-dimensional dynamical
system on Y is the set of orbits

orb(x0) :=
{

(x0,x1, . . . ,xn, . . .) ∈ (Rn)∞
∣∣ xn+1 := Ξ(xn)

}
,

for all possible, initial vectors, the seeds, x0 in Y (whence all xn ∈ Y). We
denote the system simply by (Ξ,Y).

We will give a (very) heuristic definition of chaos. A chaotic (discrete)
dynamical system is a system that is very sensitive to changes in the input
seeds, in the sense that, for ε > 0, the orbits orb(x0) and orb(x0 + ε) diverge.
This can be encapsulated in the catch phrase that chaotic systems have Sensitive
Dependence on Initial Conditions (SDIC). Chaotic systems are (almost) always
non-linear, i.e., Ξ is a non-linear map.

1

Example 1. Arguably, the simplest example of a chaotic dynamical system
is the logistic map which is the map Ξ(x) = λx(1 − x) on Y := [0, 1] with
Y0 := [0, 1/2), Y1 := [1/2, 1], and where λ > 3.6. There are several other one-
dimensional chaotic systems, such as the dyadic transformation, that exhibit
promising behaviour in the present context. A two-dimensional example, is the
Tinkerbell map, given by

Ξ : Y → Y,

xn+1

yn+1

 =

x2n − y2n + axn + byn

2xnyn + cxn + dyn

 , Y := [−2, 1]× [−2, 1],

for suitable values on a, b, c, d ∈ R. However, significant care needs to be taken
if the Tinkerbell map is used in Algorithm 1 (see the remarks below).

Now, let Y ⊂ Rn be a closed subset and let Ξ : Y → Y be a discrete dynamical
system. We split Y := Y0 ∪ Y1, where Y0 ∩ Y1 = ∅. Let Σ be a set of vectors

Σ :=
{
σi ∈ Y | 1 ≤ i ≤ d

}
, d ≥ 1.

This set will be the set of seeds for the dynamical system. We must require that

µ(Ξ(Σ) ∩ Y0) = µ(Ξ(Σ) ∩ Y1),

where µ is some measure on Rn and the equality is taken modulo some set
of measure zero. Loosely speaking this requirement means that the orbits are
“spread out evenly” over Y0 and Y1. In other words, every orbit passes through
Y0 and Y1 equally often.

However, this is not sufficient: there must also be adequate “mixing” between
Y0 and Y1, to give a suitable level of pseudo-randomness. This mixing property
is difficult to define rigourosly and so we will simply say that when, for instance
xn ∈ Y0, the probability that xn+1 ∈ Y1 is generically not less than 1/2.

Not all chaotic systems satisfy this mixing property “on their own” (in other
words, there is no natural splitting of Y into two disjoint subsets) and so a
deeper, more technical, analysis of the system is needed to use it safely in the
present context. As an example, the logistic map has sufficient mixing to ensure
“randomness”, while the Tinkerbell map does not “on its own”. To use this, one
needs to know more mathematical details on the Tinkerbell system in order to
choose the correct Y0 and Y1, as well as the parameters a, b, c, d and suitable
seeds. On the other hand, the so-called Baker’s map seems to be a map that
exhibits the necessary mixing “on its own”.

Algorithm 1 now constructs a set of binary numbers. Notice that we for
convenience restrict ourselves to even lengths of the orbits in the dynamical
system. This is obviously not a limitation in practice. Let us re-iterate that, as
stated, this algorithm does not ensure that the output is “random” enough. This
failure of “randomness” can happen, for instance, if the system has a so-called
“strange attractor”. In such a case a more thorough analysis is needed.

3 Elliptic curves over finite fields

Let Fq denote the field of q elements (see, for instance, [1]). We take a pedestrian
view on elliptic curves. Details can be found in, e.g., [1]. For a more in depth
exposition than [1], we recommend the canonical reference [4].

2

Algorithm 1: Chaotic generation of binary numbers
Input: Chaotic dynamical system (Ξ,Y), with Y ⊂ Rn as above; Set of

seeds Σ; A set of even numbers η := {ηi ∈ Z�1 | 1 ≤ i ≤ d }
Output: Binary numbers b := {bi | 1 ≤ i ≤ d}

1 i := 1
2 while i ≤ d do
3 x := σi
4 for 1 ≤ j ≤ ηi do
5 if x ∈ Y0 then
6 bj := 0

7 else
8 bj := 1

9 x := Ξ(x)

10 bi := b1b2 · · · bηi
11 bi → b
12 i := i+ 1

13 b := {bi | 1 ≤ i ≤ d}

Definition 3.1. Let q = pn, with p ≥ 5 a prime. An elliptic curve, E over Fq,
is a plane curve in F2

q defined by the equation

y2 = x3 + αx+ β, with α, β ∈ Fq, (1)

and such that 4α3 + 27β2 6= 0, together with a distinguished (abstract) element
∞ /∈ F2

q, the point at infinity. The set of solutions is denoted E(Fq).

The set E(Fq) is an abelian group under addition, which we denote ⊕
E
. For

the actual formulas defining the group structure we point the reader to [4]. The
element ∞ ∈ E is the unit element for the group structure on E.

4 Key generation

We start by defining a few functions that we will need. Let b = b1b2 . . . bn be a
binary number, where n is even. Put

sL(b) := b1b2 · · · bn
2
, and sR(b) := bn

2 +1bn
2 +2 · · · bn.

In order to not inflict more notation on the reader, when a ∈ Fq and we write
sL(a) or sR(a), we implicitly mean that a is given in binary form. Hence, implicit
in this short-hand is a choice of binary function B : Fq → {0, 1}×w, for some
w ∈ N big enough, and so we write sL(a) instead of sL(B(a)), and similarly
with sR.

If p is a (binary) point, we use the notation px and py to denote the x- and
y-coordinates. Finally, if b is a binary number, we denote by b|i the i-th bit in
b.

Suppose u ∈ Fq, and we want u to be the x-coordinate of a point on E. For
this to be possible we need to be able to solve the quadratic equation

y2 = u3 + αu+ β, (2)

3

in Fq. If the chosen u makes the equation non-solvable, we simply choose a new
u until we get a u such that the equation (2) is solvable.

4.1 Algorithm 1: a single curve
We assume from now on that we have chosen a set {uk ∈ Fq | 1 ≤ k ≤ d} such
they are all x-coordinates of points in E(Fq). We don’t assume all the uk are
distinct, but we do assume that pk, qk 6=∞ for every k.

Recall that d is the number of seeds into the chaotic machine. Now, let

Φ :=
{
φk : Z/ηk → Z/ηk | 1 ≤ k ≤ d

}
be a set of functions (for instance, elements in the symmetric group Sηk). In
addition, we fix two sets of ordered points

P :=
{
pk ∈ E(Fq) | 1 ≤ k ≤ d

}
and

Q :=
{
qk ∈ E(Fq) | 1 ≤ k ≤ d, (qk)x = uk

}
such that pi 6= qj for all 1 ≤ i, j ≤ d. The points in P and Q need not be
distinct. We view the points in Q as “base points” for the key generator.

Strictly speaking, we don’t need to start with the uk to construct the qk,
but as we will see this will allow us to better explain how to use the algorithm
below to construct hashes.

Recall that bk is a binary number generated with Algorithm 1. We now
construct the following sequence{

zkj ∈ E(Fq) | 1 ≤ j ≤ ηk, 1 ≤ k ≤ d
}

(3)

of points in E(Fq), where the zkj are given by

zkj := φk(j)(1 + bk|j)pk ⊕
E
qk, for 1 ≤ j ≤ ηk. (4)

We will apply the operators sL and sR to these points
It is possible that zkj = ∞ for some k and j. This can be resolved by, for

instance, setting sL((zkj)x) := 10 and sR((zkj)y) := 01 or something to that
effect.

If a and b are two (binary) numbers, a t b denotes the (binary) number
obtained by concatenation of a and b (hence, in general at b 6= bt a). The key
generation algorithm is now given as Algorithm 2.

The following is important enough to warrant its own remark.

Remark 1. Observe that the algorithm produces d keys. XOR:ing these keys
to produce a single key, might counteract any defiency in the mixing property
in the underlying dynamical system.

Remark 2. We feel that necessity calls for us to make the following remarks.

(0) **Comment on how this is a generalisation of the Reyad–Kotulski case.**

4

Algorithm 2: Key generation, one curve
Input: Set of binary numbers b; Set of functions Φ; Two ordered sets

of points P,Q ⊂ E(Fq)
Output: Binary numbers K := {Kk | 1 ≤ k ≤ d}

1 for 1 ≤ k ≤ d do
2 Compute the points

{
zkj | 1 ≤ j ≤ ηk

}
from (4)

3 Kk := sL((zk1)x)
⊔
sR((zk1)y)

4 for 2 ≤ j ≤ ηk do
5 if j odd then
6 Kk := Kk

⊔
sL((zkj)x)

⊔
sR((zkj)y)

7 else
8 Kk := Kk

⊔
sL((zkj)y)

⊔
sR((zkj)x)

9 K := {Kk | 1 ≤ k ≤ d}

(1) The prime p should be “big”. How “big”, you ask? In [3] Reyad and
Kotulski use primes that have ≈ 4 digits (in base-10). What is optimal
with respect to computational cost and security in the present context is
unclear and needs to be investigated, but intuitively it seems reasonable
to expect the need for a bigger p.

(2) The order of points in P and Q is important. Any permutation of the
points will in general (always?) give different keys, unless there is only
one point in P and Q, of course. So, if τ ∈ Sd is any permutation of d
elements, then taking τ(P) and/or τ(Q) will give a different set of keys,
using the same points on the curve.

(3) Clearly, there are the, not so small, issues with implementation, giving
numerical examples and security analysis. As remarked on before, this
is beyond the intended scope of this short note. However, see [2] for an
example where the above strategy was used in the simplest case of the one-
dimensional logistic map and where k = 1, in the context of construction
of keys for biometric encryption.

(4) More freedom concerning points on the elliptic curves can be had by al-
lowing points with coordinates in extension fields Fqa of Fq.

4.2 Application: constructing hashes
Is indicated above, Algorithm 2 can also serve as a basis for construction hashes.
Indeed, let msg be a “message”, represented as an element in Fp, that we wish
to hash. Assume to start with that msg is the x-coordinate of a point q on
the elliptic curve E. In order to be consistent with the notation above we put
u := msg.

By the grace of Algorithm 1 we assume that we are given a chaotically gen-
erated binary number b. Pick a point p ∈ E(Fq) different from q and construct
the sequence of points zj . Observe that we take k = 1 for now; in other words,
we only use one seed. Then using Algorithm 2 we can construct the number K,
which will be our hash value.

5

However, hash values associated with a fixed hashing algorithm all have the
same length so we need to adjust for this. This can be achieved by choosing the
length of the orbit (of the seed) to be fixed (and an even number).

Now, taking k ≥ 2, we can do three things:

(1) construct k hashes in one go, or

(2) construct k hashes in one go, and then XOR the results, or

(3) hash several messages at once.

Obviously, a thorough analysis of the above construction needs to be done
to evaluate the requirement for an algorithm to be a safe hash function.

4.3 Algorithm 3: multiple curves
Instead of using one curve with multiple seeds, parametrised by the index k,
we can use k to parametrise pairs (Ek, σk), where the Ek are elliptic curves
(not necessarily distinct) and σk ∈ Σ a seed for the chaotic system. We could
use several seeds for each curve, but for simplicity (of notation primarily) we
associate one curve and one seed in the following.

Let
Φ :=

{
φk : Z/ηk → Z/ηk | 1 ≤ k ≤ d

}
be a set of functions and b = {bk} a set of ηk-bit binary numbers, as before.
Now, take a family of elliptic curves (not necessarily distinct) parameterised by
1 ≤ k ≤ d,

E :=
{
Ek : y2 = x3 + αkx+ βk | 1 ≤ k ≤ d, αk, βk ∈ Fq

}
,

and elements uk ∈ Fq. We also allow ourselves two sets of points

PE :=
{
pk ∈ Ek(Fq) | 1 ≤ k ≤ d

}
and

QE :=
{
qk ∈ Ek(Fq) | 1 ≤ k ≤ d, (qk)x = uk

}
such that pk 6= qk for all 1 ≤ k ≤ d.

Modifying the construction in (3), we do the following: construct the se-
quence of points zk in Ek(Fq) by

zk :=
(
zkj
)ηk
j=1
∈ Ek(Fq)×ηk :=

ηk∏
j=1

Ek(Fq), (5)

with
zkj := φk(j)(1 + bk|j)pk ⊕

Ek

qk ∈ Ek(Fq)

as before (equation (4)). This gives us the d-tuple

z :=
(
z1, z2, . . . , zk

)
∈

d∏
k=1

Ek(Fq)×ηk .

In Algorithm 3 we now generalise Algorithm 2.
Observe that, for each k the computation takes place in different curves

(generically at least). Hence every key Kk comes from a different curve. By
XOR:ing the d keys Kk we get a single key, obtained from multiple curves.

6

Algorithm 3: Key generation, multiple curves
Input: Family E of d elliptic curves; Set of binary numbers b; Set of

functions Φ; Two ordered multisets of points PE,QE ⊂ E(Fq)
Output: Binary numbers K := {Kk | 1 ≤ k ≤ d}

1 for 1 ≤ k ≤ d do
2 Compute the points

{
zkj | 1 ≤ j ≤ ηk

}
⊂ Ek(Fq) from (4)

3 Kk := sL((zk1)x)
⊔
sR((zk1)y)

4 for 2 ≤ j ≤ ηk do
5 if j odd then
6 Kk := Kk

⊔
sL((zkj)x)

⊔
sR((zkj)y)

7 else
8 Kk := Kk

⊔
sL((zkj)y)

⊔
sR((zkj)x)

9 K := {Kk | 1 ≤ k ≤ d}

Acknowledgements
Thanks to Kiran Raja for constant pushing and encouragement. He also read
a preliminary draft and offered very helpful comments.

References

[1] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An introduction to
mathematical cryptography. Undergraduate Texts in Mathematics. Springer,
New York, second edition, 2014.

[2] Paul Knutson, Kiran Raja, Daniel Larsson, and Raghavendra Ramachandra.
Finite field elliptic curve for key generation and biometric template protec-
tion. In 2021 IEEE International Workshop on Biometrics and Forensics
(IWBF), pages 1–6, 2021.

[3] Omar Reyad and Zbigniew Kotulski. Statistical analysis of the chaos-driven
elliptic curve pseudo-random number generators. In Intl. Conf. on Cryptog-
raphy and Security Systems, pages 38–48. Springer, 2014.

[4] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1986.

7

	Introduction
	Discrete dynamical systems and chaotic maps
	Elliptic curves over finite fields
	Key generation
	Algorithm 1: a single curve
	Application: constructing hashes
	Algorithm 3: multiple curves

