
Quadratic Number Fields

1 . Unique factorisation domains /

Let D be an integral domain, or domain, for short. Recall that this is a commu-
tative ring without zero-divisors, i.e., without non-zero elements a, b ∈ D such
that ab = 0.

The Fundamental Theorem of Arithmetic says that every integer n can
factored, uniquely (up to permutation of the prime factors), as a product

n = ±pk1
1 p

k2
2 · · · pkm

m , pi ∈ Spec(Z).

It is reasonable to ask if this can be generalised to other rings D, not just D = Z.
Observe that it is essential that D is an integral domain (why?).

The answer is in most cases no. Let us investigate this a little further. The
following definition is a direct generalisation of factors in Z.

Definition 1. Let D be a domain and a, b ∈ D. Then a divides b, or is
a factor in b, if there is a c ∈ D such that b = ac. Just as in Z we denote
this a | b.

We will from now on use the blanket assumption that D is an integral do-
main.

Definition 2. Let u ∈ D. Then u is a unit if u |1, in other words u has an
inverse. Two elements a and b are associate elements (or associates)
if there is a unit u such that b = au.

Observe that, since u is a unit,

b = au ⇐⇒ a = u−1b.

Clearly, if u is a unit, so too is u−1.
We denote the set of units in D by D× or, sometimes, U(D). In addition,

we put D◦ := D \ {0}.

Definition 3. Let π ∈ D◦. Then

(a) π is irreducible if any factorisation π = ab, implies that a or b is
a unit.
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(b) π is a prime element, or simply prime, if any factorisation π = ab,
implies that π | a or π | b.

We directly note:

Lemma 1. Any prime element is irreducible.

The converse is in general false.

Proof. Let π be a prime. Suppose we could factor π as π = ab, with a, b /∈ D×.
The assumption π = ab implies that π | (ab) since π certainly divides the left-
hand side. Therefore, since π is prime, we have either π | a or π | b. Suppose
that π | a. This is equivalent to a = kπ, for some k ∈ D◦. Hence, we have
π = kπb, which we can rearrange as π(kb − 1) = 0. Since π 6= 0, we must
have kb = 1 and so b is a unit. This is a contradiction to the assumption that
b /∈ D×.

Recall the following definition:

Definition 4. An ideal a in a ring R is a prime ideal if ab ∈ a implies
that a ∈ a or b ∈ a.

The following remark is important.

Remark 1. Let a = (a) be a principal ideal. The following equivalences
hold

α ∈ a ⇐⇒ α = ba ⇐⇒ a | α.

This can be used as a justification for the following notation: suppose a
and b = (β) are ideals, with a not necessarily principal. Then

(β) ⊂ a ⇐⇒ a | (β).

In particular, if a = (α),

(β) ⊂ (α) ⇐⇒ (α) | (β) ⇐⇒ α | β.

More generally, we can define

b ⊂ a ⇐⇒ a | b.

Be sure to reconcile this with your intuition.

Definition 5. An integral domain D is a unique factorisation domain
(UFD) if

(U1) Every non-zero a /∈ D× can be factored into a finite product of
irreducible elements.
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(U2) If

a =

n∏
i=1

πi and a =

m∏
i=1

π′i

are two different factorisations into irreducibles, then n = m and{
π1,π2, . . . ,πn

}
=
{
π′1,π

′
2, . . . ,π

′
n

}
.

Observe that we don’t say anything concerning the πi in the factorisation
being distinct.

Example 1. Clearly, in Z the irreducible elements are the prime numbers.
Prime numbers are also prime elements (this will follow from a theorem
below).

Unique factorisation is guaranteed by the Fundamental Theorem of
Arithmetic.

Definition 6. A domain D is a principal ideal domain (PID) if every
ideal in D is principal. That is, every ideal a ⊂ D can be written as

a = (a) :=
{
d ∈ D

∣∣ d = xa, for some x ∈ D
}

(i.e., the ideal of all multiples of a).

The statements collected in the following theorem are quite difficult to prove
so we will omit the proofs.

Theorem 1. Let a, b, c, d ∈ Z. Then

(i) every PID is UFD;

(ii) in a PID:
π irreducible ⇐⇒ π prime;

(iii) if D is a field, D[x] is a PID, and hence a UFD by (i).

Theorem 2. Let p := (π) ⊂ D be a principal ideal in the domain D.
Then

p is a prime ideal ⇐⇒ π is a prime element.

Proof. Suppose first that p = (π) is a prime ideal. Hence ab ∈ p implies that
a ∈ p or b ∈ p. That ab ∈ p is equivalent to the existence of a c ∈ D such that
ab = cπ. Since p is principal, a = απ and b = βπ which means that π | a or
π | b. Assume now that π is prime and that ab ∈ p = (π). This is equivalent to
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ab = cπ for some c ∈ D. Since π is prime, π | a or π | b which is equivalent to
a ∈ (π) = p or b ∈ (π) = p and so p is prime ideal.

The theorem justifies the following notation:

PSpec(D) :=
{
p ⊂ D

∣∣ p = (π) for a prime element π
}

⊆ Spec(D) :=
{
p ⊂ D

∣∣ p a prime ideal
}
.

Therefore, if D is a PID,

PSpec(D) = Spec(D).

This equality have some interesting consequences as we will see below.

2 . Euclidean rings /

We will now generalise the division algorithm to a class of integral domains.

Definition 7. An integral domainD is a Euclidean domain if a function

ε : D◦ → Z≥0

can be constructed such that

(Val1) for all a, b ∈ D◦, there are elements q, r ∈ D such that

a = qb+ r, where r = 0 or 0 ≥ ε(r) < ε(b);

(Val2) for all a, b ∈ D◦, ε(a) ≤ ε(ab). (Clearly we can switch a and b.)

The function ε is called a Euclidean valuation.

The similarity with the division algorithm on Z must not be lost on the reader.
Indeed,

Example 2. The absolute value ‖ · ‖ on Z is a Euclidean valuation.
Observe that

‖ab‖ = ‖a‖ · ‖b‖ ≥ ‖a‖, since ‖b‖ ≥ 1,

so axiom (Val1) is satisfied. Axiom (Val2) is the division algorithm.

Example 3. LetD = k be a field. The polynomial ring k[x] is a Euclidean
domain with valuation

ε(P (x)) := deg(P (x)),
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If P (x) ∈ k (recall: k is a field) the degree is 0, so ε(P (x)) = 0 for constant
polynomials.

The axiom (Val1) is simply polynomial division and (Val2) follows
since

ε(P (x)Q(x)) = deg
(
P (x)Q(x)

)
= deg(P (x)) deg(Q(x))

= ε(P (x))ε(Q(x)).

Observe that ε(0) is not defined.

Theorem 3. We have the following implications for a domain D:

D is Euclidean =⇒ D is a PID
Thm. 1(i)

=⇒ D is a UFD.

Proof. Maybe someday.

Corollary 4. Let k be a field. Then the polynomial ring k[x] is a PID
and a UFD.

Proof. By example 3, k[x] is a Euclidean domain and theorem 3 then gives the
desired conclusions.

Example 4. Since Z and k[x] (where k is a field) are PIDs we see that
PSpec(Z) = Spec(Z) and PSpec(k[x]) = Spec(k[x]).

Theorems 1 and 2 imply that p = (f(x)) ⊂ k[x] is a prime ideal if f(x)
is an irreducible polynomial over k.

Example 5. Primes in Z[x].

Definition 8. Let D be a UFD. Then a greatest common divisor
between a, b ∈ D◦ is an element d such that d | a and d | b, such that if
c | a and c | b, then c | d. We write gcd(a, b) for the element d.

Observe that we say a greatest common divisors. The reason is that gcd’s are
only defined up to multiples of units.

The existence of greatest common divisor that can be defined for a, b ∈ D◦

is not guaranteed in general. However,
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Theorem 5. Let D be a PID. Then for all non-zero a, b ∈ D there is
a greatest common divisor. In addition, a generalised Bézout’s theorem
holds: There are elements x, y ∈ D such that

gcd(a, b) = xa+ ya.

Proof. Maybe someday.

Corollary 6. If E is a Euclidean domain, then there is also a Euclidean
algorithm that finds the gcd(a, b).

I want to point out that it is not straightforward to deduce the corollary from
theorem 5. Quite a lot of work is needed to prove the claim. But it should be
said that the proof is constructive and so can be turned into a way to compute
the gcd.

Finally, a definition that resembles the definition of Euclidean valuation.

Definition 9. A function Nm : D→ Z such that

(i) Nm(a) ≥ 0, for all a ∈ D;

(ii) Nm(a) = 0 ⇐⇒ a = 0, and

(iii) Nm(ab) = Nm(a)Nm(b)

is called a (multiplicative) norm on D.

Theorem 7. Let Nm be a norm on D. Then

(a) Nm(1) = 1 and
a ∈ D× =⇒ Nm(a) = 1;

(b) if
a ∈ D× ⇐⇒ Nm(a) = 1,

then any element π ∈ D× with norm Nm(π) = p ∈ Spec(Z), is an
irreducible element of D.

Proof. We have, since Nm is multiplicative,

Nm(1) = Nm(1 · 1) = Nm(1)Nm(1) ⇐⇒ Nm(1)
(
Nm(1)− 1

)
= 0

from which it follows that Nm(1) = 1 (the first factor cannot be 0 since Nm(a) =
0 if and only if a = 0 by definition 9 (ii), and 1 6= 0).

Similarly, if u ∈ D×, then

1 = Nm(1) = Nm(u · u−1) = Nm(u)Nm(u−1)
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so Nm(u−1) = Nm(u)−1, but since im(Nm) ⊆ Z, we conclude that Nm(u) = 1
for u ∈ D×.

Suppose finally that Nm(a) = 1 implies a ∈ D× for all a ∈ D, and take an
element π ∈ D with Nm(π) = p ∈ Spec(Z). Assume that π is not irreducible.
Then we can factor π = a · b, where neither a nor b is a unit. Taking norms
gives

p = Nm(π) = Nm(ab) = Nm(a)Nm(b).

Since p is prime we must have that either Nm(a) = 1 or Nm(b) = 1. But by
hypothesis this implies that a or b is a unit, which is a contradiction to the
assumption that π is not irreducible.

3 . The ring Z[i], and sums of squares /

In this section we will prove a result of Euler (known by Fermat) that states
precisely when a prime p ∈ Spec(Z) can be written as a sum of squares. In fact,

Theorem 8 (Euler). A prime p ∈ Spec(Z) can be written as a sum of
squares

p = a2 + b2

if and only if p ≡ 1 (mod 4).

The journey to the proof of this theorem is just as satisfying as the result itself(a).

Definition 10. The ring

G := Z[
√
−1] :=

{
a+ b

√
−1

∣∣ a, b ∈ Z
}
⊂ C,

is called the Gaussian integers.

As is customary we put
i :=

√
−1.

The set G is a subring of C and so one add and multiply exactly as is done
in C. However, G is not a field so division is not defined.

Now, Let z = a+ bi. We define a norm on G by

Nm(z) := z · z̄ = (a+ bi)(a− bi) = a2 + b2. (1)

Observe that if z ∈ Z, i.e., z = a+ 0i, then Nm(z) = a2.
It is easy to check (do this!) that the first condition in the definition of a

norm is satisfied. The second is a bit more tricky.

Theorem 9. The function Nm given in (1) defines a norm and, therefore,

(a)It should be remarked that Euler didn’t have the machinery used below at his disposal
(this machinery is due to Gauss), and so Euler had another proof.
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G is a Euclidean ring.

In the process of proving this we will actually, in addition, prove that there is a
division algorithm on G.

Proof. Let a, b ∈ Z, with a ≥ b. The first thing to observe is that any integer u is
less than (or equal) to 1

2‖b‖ from
(b) any multiple, q, of b. Then ‖a−qb‖ ≤ 1

2‖b‖.
Put r := a− qb. From this follows

a = qb+ r and ‖r‖ ≤ 1

2
‖b‖. (2)

It is very important to observe that this is not the division algorithm on Z,
even if a, b ∈ Z. Namely, we are not requiring r < b, only that ‖r‖ ≤ ‖b‖ (in
fact, we can even take ‖r‖ ≤ 1/2‖b‖ as argued above).

Now, take two elements α,β ∈ G, such that β 6= 0. We now divide α and
β and rewrite (using the arithmetic in C)

α

β
=
αβ̄

ββ̄
=

αβ̄

Nm(β)
. (3)

Be sure to observe that α/β /∈ G. This is an element in

Q(i) :=
{
x+ yi ∈ C

∣∣ x, y ∈ Q
}
⊂ C.

We will come to this ring later.
Put

αβ̄

Nm(β)
=

u+ vi

Nm(β)
, u, v ∈ Z. (4)

Then using equation (2) we can write

u = Nm(β)qu + ru, v = Nm(β)qv + rv, qu, qv ∈ Z,

and where
0 ≤ ru, rv ≤

1

2
‖b‖.

Insertion of this into (3), using (4), gives

α

β
= γ +

ru + rvi

Nm(β)
, γ := qu + qvi.

Then
ρ := α− βγ =

ru + rvi

Nm(β)
,

implying that

Nm(ρ) = Nm
(
α− βγ

)
= Nm

(
ru + rvi

Nm(β)

)
=

Nm(ru + rvi)

Nm(β)
.

Put y := (ru + rvi)/β̄. From this we compute

yβ̄ = ru + rvi =⇒ Nm(yβ̄) = Nm(y)Nm(β̄) = r2u + r2v.

(b)The notation ‖b‖ means absolute value.
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This gives that

Nm(ρ) =
r2u + r2v
Nm(β)

.

Since 0 ≤ ru, rv ≤ 1
2‖b‖, we find that

Nm(ρ) ≤
1
4Nm(β)2 + 1

4Nm(β)2

Nm(β)
=

1

2
Nm(β)

which is what we wanted to prove.

Corollary 10. The Gaussian integers G is a PID and hence also a UFD.
Hence, there are greatest common divisors and, as a consequence, a cor-
responding Bézout theorem.

Recall the gcd’s are only defined up to units.

Theorem 11. Let π ∈ G. If Nm(π) ∈ Spec(Z), then π is a prime
element.

Proof. Maybe someday.

Corollary 12. For the ring G we have:

a ∈ G× ⇐⇒ Nm(a) = 1.

Proof. This follows from theorem 11 and theorem 7 part (b).

Lemma 2. We have U(G) =
{
± 1,±i

}
.

Proof. Clearly, these elements are units. For instance, the inverse to i is −i.
Suppose now that z = a+bi is a unit. Then there is a z−1 such that z ·z−1 = 1,
so Nm(z)Nm(z−1) = 1. Therefore, since Nm : G → Z, we must have that
Nm(z) = ±1. However, the norm is always positive so, Nm(z) = 1. We see that
Nm(z) = a2 + b2 = 1. The only solutions to this equation are z ∈ {±1,±i}.

Lemma 3. Let a, b, c ∈ G such that gcd(a, b) = 1. Then,

a | bc =⇒ a | c.

Proof. The proof here is word-for-word the same as for Z.

Lemma 4. Let π ∈ G be a prime element. Then, for a1, a2 ∈ G such
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that π | a1a2, we have π | a1 or π | a2. An induction argument extends
this to finitely many elements a1, a2, . . . , an ∈ G.

Proof. Suppose that π - a1. Since any greatest common divisor d ∈ G between
π and a, divides π, i.e., π = kd for some k ∈ G, we see that k must be a unit
because π is prime and thus have no non-unit factors. Therefore, d = 1 and
hence gcd(a1,π) = 1 and so the lemma follows from lemma 3.

Lemma 5. Let π ∈ G be a prime element. Then there is some p ∈
Spec(Z) such that π | p.

Proof. Observe first that π always divides its norm: Nm(π) = π · π̄ ∈ Z≥1.
Since Nm(π) is a positive integer we can factor it as

ππ̄ = Nm(π) = p1p2 · · · pn,

not all pi necessarily distinct. Therefore π | (p1p2 · · · pn) and lemma 4 then
shows that π | pi for some pi.

Finally, we have the following theorem which is the crowning achievement con-
cerning G:

Theorem 13. Let p ∈ Spec(Z).

(a) The following statements are equivalent:

(i) p = 2 or p ≡ 1 (mod 4);

(ii) x2 ≡ −1 (mod p) has a solution;

(iii) p = a2 + b2 for some a, b ∈ Z.

(b) The following statements hold in G:

(i) 2 = (1 + i)(1− i) = −i(1 + i)2;

(ii) if p ≡ 1 (mod 4) then p = ππ̄, where π is a prime;

(iii) if p ≡ 3 (mod 4) then p is prime in G.

(c) Every prime in G can be written as a unit-multiple of the following
primes

(i) 1 + i;

(ii) π or π̄ such that Nm(π) = ππ̄ = p ∈ Spec(Z) and p ≡
1 (mod 4);

(iii) p ∈ Spec(Z), where p ≡ 3 (mod 4).

Note that p ≡ 1 (mod 4) is equivalent to p = 4k + 1, for some k ∈ Z and
p ≡ 3 (mod 4) is equivalent to p = 4k+ 3 (for some k ∈ Z). Clearly there are no
primes p ≥ 3 satisfying p ≡ 0, 2 (mod 4).
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Proof. (a) To show that (i) implies (ii) we first note that x = 1 is a solution
to the congruence when p = 2, so we can assume p 6= 2.
Since p 6= 2 the polynomial tp−1 − 1 can be factored

tp−1 − 1 =
(
t(p−1)/2 − 1

)(
t(p−1)/2 + 1

)
.

A polynomial of degree d has at most d roots modulo p (why?).
Fermat’s little theorem implies that tp−1 − 1 has p − 1 roots modulo p
(namely, {1, 2, . . . , p − 1}). The polynomial t(p−1)/2 − 1 has at least one
root (t = 1) and at most (p− 1)/2. Hence the polynomial t(p−1)/2 + 1 has
at least one root, say, a. In other words, a(p−1)/2 = −1. Since p = 4k+ 1,
(p− 1)/2 = 2k, and so a(p−1)/2 = a2k = (ak)2 = −1, which proves that (i)
implies (ii).
That x2 ≡ −1 (mod p) is equivalent to p | (x2 + 1)

p | (x2 + 1) ⇐⇒ p | (x− i)(x+ i).

If p is a prime in G, i.e., that (p) ∈ Spec(G), we must have

p | (x− i) or p | (x+ i).

Say, p | (x− i). Then x− i = pc for some c ∈ G. Put c = a+ bi:

pc = p(a+ bi) = x− i =⇒ pbi = −i ⇐⇒ pb = −1.

But since p is a prime in Z, this is not possible. Hence p cannot be a prime
in G and so is composite.
Assume that p = uv is decomposition of p in G. Then

Nm(p) = Nm(uv) = Nm(u)Nm(v) ⇐⇒ p2 = Nm(u)Nm(v).

Hence Nm(u) = Nm(v) = p. Otherwise one of Nm(u) and Nm(v) is 1 and,
by corollary 12, this would imply that one of these is a unit. This is a
contradiction to the assumption that p is a prime.
This means that, upon writing u = a+ bi,

p = Nm(u) = a2 + b2.

Therefore p is a sum of squares and thus (ii) implies (iii).
Suppose now that p = a2 + b2, for some a, b ∈ Z. Then we can factor p as

p = (a+ bi)(a− bi), (5)

in other words, p is composite. Assume that p 6≡ 1 (mod 4), i.e., p ≡
3 (mod 4). This is then equivalent to p = 4k+ 3 for some k ∈ Z. It is easy
to check that there is no way for 4k+ 3 to be a sum of two squares (try a
and b with the different possible parities). Hence p ≡ 1 (mod 4) and this
proves that (iii) implies (i), and so part (a) is proved.

(b) Part (i) is obvious. For part (ii) assume that p ≡ 1 (mod 4). Then p can
be factored as in (5). Therefore, we need to prove that π = a + bi and
π̄ = a − bi are primes. However, Nm(π) = Nm(π̄) = p and so theorem
11 implies that, indeed, both of these are primes. This also implies that if
p ≡ 3 (mod 4) then p must be a prime in G, since otherwise we can factor
into two conjugate prime elements by (ii).
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(c) This a collection of theorems...

4 . The field Q(
√
d) and its ring of integers /

4.1 � Definition �

Definition 11. Assume that the roots of the equation

y2 + αy + β = 0, α, β ∈ Z,

are non-rational. Let ξ /∈ Q be one of these. The two-dimensional Q-
vector space

Q(ξ) := Q + Q · ξ =
{
a+ bξ

∣∣ a, b ∈ Q
}

is the quadratic number field generated by ξ.

• The field Q(ξ) is a quadratic field extension of Q and we write
Q(ξ)/Q to denote this extension.

• The field is imaginary if ξ2 < 0 and real if ξ2 > 0.

When ξ is not necessary to make explicit we will often write K for Q(ξ).

The proof that Q(ξ) is indeed a field is left as an exercise.
Since

y2 + αx+ β =
(
y +

α

2

)2
+ β − α2

4

we can, by putting z := y + α/2, assume that ξ is a solution to an equation
on the form y2 = D. In other words, we can assume that ξ =

√
D for some

D ∈ Z \ {0, 1}. Clearly, D = β − α2/4.

We will from now on always assume that ξ =
√
D for some square-free

integer D 6= 0, 1.

Example 6. Clearly, when α = 0 and β = 1, we get the field

Q(i) :=
{
a+ bi

∣∣ a, b ∈ Q
}
.

Observe that the Gaussian integers G = Z[i] is a subring in Q(i).

Example 7. Put ξ =
√
−3. Then Q(ξ) is an imaginary quadratic field.
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The element

z :=
−1 +

√
−3

2
∈ Q(ξ)

is a solution to the equation y2 + y + 1 = 0. We have

Q(z) ⊆ Q(ξ).

A moment’s thought will convince the reader that

Q(z) = Q(ξ).

Therefore, there can be many equations whose roots generate the same
quadratic field.

There is a canonical automorphism

conj : Q(ξ)→ Q(ξ), a+ bξ 7→ a− bξ

on any quadratic field. This is an involution, meaning that c2 = id. Therefore,

conj2(a+ bξ) = conj
(
conj(a+ bξ)

)
= a+ bξ.

As a consequence, the set G := {id, conj} is a group, isomorphic to Z/2, called
the Galois group of the quadratic extension Q(ξ)/Q.

The element z̄ := conj(z) is called the conjugate of z ∈ Q(ξ).

4.2 � The characteristic polynomial and the discriminant �
Let z = a + bξ ∈ Q(ξ) be non-zero in order to avoid trivialities. The there
is a unique (up to multiples) quadratic polynomial Pz(y) ∈ Q[y] such that
Pz(z) = 0. Indeed, remembering that ξ2 = D, this polynomial is

Pz(y) = y2 − 2ay + a2 − b2D

as is easily checked. The polynomial Pz(y) is called the characteristic poly-
nomial (or minimal polynomial) of z.

A more conceptual definition is the following.

Definition 12. Let z ∈ Q(ξ).

(i) Define Tr(z) := z + z̄ and N(z) := zz̄ = z · conj(z), the trace and
norm of z, respectively. Then

Pz(y) = y2 − Tr(z)y + N(z). (6)

(ii) The discriminant of z is

∆(z) := (z − z̄)2 = z2 + z̄2 − 2N(z) = 4b2N(z).
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Theorem 14. The norm and trace satisfy

Tr(z +w) = Tr(z) + Tr(w), and N(zw) = N(z)N(w),

in other words, Tr is additive and N is multiplicative.

Proof. This is an easy exercise.

Remark 2. Observe that following:

(i) Tr(z),N(z) ∈ Q (prove this!).

(ii) We are not claiming that N and Nm are somehow related. In fact,
properties (ii) and (iii) in definition 9 are satisfied for N, but (i) is
not always true. In fact, part (i) of definition 9 is true only for fields
where where D < 0, i.e., for imaginary quadratic fields.

Theorem 15 (Cayley–Hamilton). Viewing multiplication of z on the
vector space Q(ξ) as a linear map, i.e.,

mz : Q(ξ)→ Q(ξ), w 7−→ z ·w,

then
Pz(mz) = Pz(z) = 0.

Proof. Insert z into Pz and check that it becomes zero.

4.3 � Rings of integers �

Definition 13. Let K = Q(ξ) be a quadratic field. Then the ring of
(quadratic) integers in K is the subring of K defined as

OK :=
{
z ∈ Q(ξ)

∣∣ P (z) = 0, for some monic P (z) ∈ Z[y]2

}
=
{
z ∈ Q(ξ)

∣∣ Tr(z),N(z) ∈ Z
}
,

where Z[y]2 denotes the set of all polynomial of degree two. That OK is
indeed a ring follows from theorem 14 (check this!). The second equality
follows from theorem 15.

Note that Z ⊂ OK since every a ∈ Z is the solution to the equation
(y − a)2 = 0.
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For an element w ∈ K = Q(ξ), we put

Z[w] := Z + Zw =
{
a+ bw | a, b ∈ Z

}
.

We now have the following explicit description of OK .

Theorem 16. We have

OK =

Z[ξ], if D ≡ 2, 3 (mod 4)

Z
[
1+ξ
2

]
, if D ≡ 1 (mod 4).

Proof. Recall the assumption that D is square-free.
Clearly, both ξ and (1 + ξ)/2 lie in OK since they are solutions to the

equations y2 − D = 0 (in the first case) and y2 − y − (D − 1)/4 = 0 (in the
second case), respectively. Hence,

Z[ξ] ⊆ OK , for D ≡ 2, 3 (mod 4),

and
Z
[1 + ξ

2

]
⊆ OK , for D ≡ 1 (mod 4).

We thus have to prove the reverse inclusions.
Suppose z = a+ bξ ∈ OK , for a, b ∈ Q. We need to prove that we can take

a, b ∈ Z. Put a = r/2 and b = m/n, for some r,m, n ∈ Z where gcd(m,n) = 1.
Then (check!)

N(z) = a2 − b2D ⇐⇒ 4m2D = n2(r2 − 4N(z)).

This implies that
n2 | 4m2D

and since gcd(m,n) = 1 we must have that n2 | 4D.
If n has a prime factor p ≥ 3 then p2 | 4D gives a contradiction since D is

square-free. Hence, n must be a power of 2, n = 2k, implying that 22k | 4D.
There is at most one factor 2 in D since D is square-free, so k is either 0 or 1,
showing that n is either 1 or 2. Therefore, we can write b = m/2 for some m.

Since N(z) = a2 − b2D ∈ Z, we find that

r2

4
− m2D

4
= k ⇐⇒ r2 ≡ m2D (mod 4). (7)

Now, the congruence D ≡ 2, 3 (mod 4) is equivalent to D = 4l + i, where
i = 2, 3. Putting this into (7), we find that r2 andm2 must both be congruent to
zero modulo 4. Consequently, r and m are even. The assumption that a = r/2
and b = m/2 means that a, b ∈ Z and so z ∈ Z[ξ] when D ≡ 2, 3 (mod 4).

On the other, if D ≡ 1 (mod 4) ⇐⇒ D = 4l + 1, we get from (7) that
r2 ≡ m2 (mod 4), implying that r ≡ m (mod 2). Hence, r = m + 2s for some
s ∈ Z and so

z = a+ bξ =
r

2
+
mξ

2
=
m+ 2s

2
+
mξ

2
= s+m

1 + ξ

2
∈ Z

[1 + ξ

2

]
,

completing the proof.
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Remark 3. It is probably advisable to issue a warning at this point. In
the case where D ≡ 1 (mod 4) we see that (1 + ξ)/2 ∈ OK . This does not
mean that 1/2 ∈ OK . Indeed, suppose we had 1/2 ∈ OK . Then there
would exist a, b ∈ Z such that

1

2
= a+ b

1 + ξ

2
⇐⇒ 2a+ b+ bξ = 1.

Since there is no ξ on the right-hand side, we must have b = 0. However,
this would imply that 2a = 1, which is a contradiction to the fact that
a ∈ Z.

Definition 14. It is convenient to put

λ :=

ξ, if D ≡ 2, 3 (mod 4)

1+ξ
2 , if D ≡ 1 (mod 4),

calling this the universal generator for OK . Observe that

Q(λ) = Q(ξ)

(ref. example 7).

We note

Lemma 6. The norm of the universal generator is given as

N(λ) :=

D, if D ≡ 2, 3 (mod 4)

1−D
4 , if D ≡ 1 (mod 4).

Definition 15. The discriminant of Q(ξ) (or OK) is defined as

∆ :=

4λ, if D ≡ 2, 3 (mod 4)

λ, if D ≡ 1 (mod 4).

It is now possible to unify the two cases in theorem 16 (check this!):

Corollary 17. We have

OK = Z + Z · ∆ +
√

∆

2
,
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where ∆ is the discriminant of OK .

5 . Ideal theory for quadratic fields /

There are several statements in this section that are left without proofs (at
least for now). An interested reader can look up these in any book on algebraic
number theory.

5.1 � Modules, lattices and ideals �
Recall that a vector space V over a field k is an abelian group such that for
every u ∈ V and a ∈ k, we have that au ∈ V . We will now generalise this by
replacing k by an arbitrary commutative ring.

Definition 16. Let R be a commutative ring andM = (M,+) an abelian
group. Then M is an R-module, or a module over R if the following
axioms hold:

(M1) for all r ∈ R and all u ∈M ,

ru ∈M and ur ∈M ;

(M2) for all r ∈ R and all u,v ∈M ,

r(u+ v) = ru+ rv, and (u+ v)r = ur + vr;

(M3) for all r, s ∈ R and all u ∈M ,

(r + s)u = ru+ su;

(M4) for all u ∈M
1 · u = u · 1 = u.

Clearly a vector space over k is a k-module. In addition, R is itself an
R-module. Here are a couple of less trivial example.

Example 8. Let I ⊆ R be an ideal. Then I is an R-module. Indeed,
an equivalent definition of an ideal is as a a subset of R that is also an
R-module. Recall that, if 1 ∈ I, then I = R and so we get the R viewed
as a module over itself.

Example 9. Once again, let I ⊂ R be an ideal. Then R/I is an R-
module: let m = r + I ∈ R/I, and let s ∈ R. Then

s ·m = s(r + I) = sr + sI = sr + I ∈ R/I,

17



since I is an ideal. The verification that the other axioms are satisfied is
left as an exercise for the reader.

For a concrete example, consider R = k[y] and I = (f(y)). Recall that
if f(y) is irreducible, I is a prime ideal (and also maximal since k[y] is a
PID. (Hence, R/I is a field extension of k.) It is important to observe
that, for P (y) ∈ k[y],

P (y) 7−→ R(y) ∈ R/I, P (y) = Q(y)f(y) +R(y) (division algorithm).

Hence deg(R(y)) < deg(f(y)).
This means that P (y) acts on q(y) + (f(y)) as

P (y)
(
q(y) + (f(x))

)
= R(y)q(y) + (f(y)) = r(y) + (f(y)),

where R(y)q(y) = r(y) + g(y)f(y) for some g(y) ∈ k[y].
The above looks more complicated than it is. The only thing to re-

member is that when we multiply elements from R with elements in R/I
we must reduce modulo I.

For instance, let f(y) = y2 + 11 in R = Q[y]. This gives that

R/(f(y)) = Q[y]/(y2 + 11) = Q(ξ), ξ2 = −11,

i.e., R/I is a quadratic field.
Now, let P (y) ∈ R and let r(ξ) be its reduction modulo f(y) = y2 +11

(i.e., the residue of P (y) modulo (y2 + 11)). Note that y 7→ ξ under the
reduction. Hence,

P (y) · (a+ bξ) = r(ξ)(a+ bξ) = a′ + b′ξ,

where we have killed all multiples of f(y) = y2 + 11 (reducing modulo
f(y)).

Suppose P (y) = y3 − 7y − 2, then

(y3 + 7y − 2) · (5− 3ξ) = (y · y2 + 3y2 − 2) · (5− 3ξ)

= (ξ · 11 + 7ξ − 2) · (5− 3ξ)

= (14ξ − 2) · (5− 3ξ)

= 70ξ − 42ξ2 − 10 + 6ξ

= −472 + 76ξ.

Observe that the equalities are taken modulo y2 + 11.

The following example is important.

Example 10. Suppose R = Z and let W := {w1,w2, . . . ,wn} ⊂ C. The
lattice spanned by W is the Z-module

Λ = Zw1 + Zw2 + · · ·+ Zwn.
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This means that if z ∈ Λ then

z = a1w1 + a2w2 + · · ·+ anwn.

Note that Λ ⊂ C.
Now, assume that R = OK = Z[λ] for K a quadratic number field.

The Z-module
Λλ := Z · 1 + Zλ = Z + Zλ ⊂ C

is a lattice in C. In addition, it is an OK-module: for z = a+ bλ ∈ OK ,
we have

z(u+ vλ) = (a+ bλ)(u+ vλ) = au+ bvλ2 + (av + bu)λ.

Observe that this is essentially tautological. Recall that

λ2 =

{
D, if D ≡ 2, 3 (mod 4)

λ+ D−1
4 , if D ≡ 1 (mod 4),

so

z(u+ vλ) =

au+ bvD + (av + bu)λ, if D ≡ 2, 3 (mod 4)(
au+ bv(D−1)

4

)
+ (av + bu+ bv)λ, if D ≡ 1 (mod 4).

We won’t prove the following two lemmas.

Lemma 7. Let Λ be a lattice

Λ = Zz1 + Zz2 ⊆ OK = Z + Zλ.

Then there are n,m ∈ Z≥1 and a ∈ Z, such that

Λ ' Zn+ Z(a+mλ)

as a lattice.

Lemma 8 (Ideals and lattices). The lattice Λ = Zn + Z(a + bλ) is an
ideal if and only if

b | a, b | n, and n |
(
b ·N(m+ λ)

)
,

where m is the unique integer satisfying a = mb.

Observe that there can be non-principal ideals in OK . Hence OK is not, in
general, a PID.
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If a = Zn+ Z(a+ bλ) is an ideal we use the equivalent notations

a = Zn+ Z(a+ bλ) ⇐⇒ a =
(
n, a+ bλ

)
.

Definition 17. Let S, T ⊂ R be two subsets in a ring R. Then the
product of S and T is defined as

S · T :=
{
s1t1 + s2t2 + · · ·+ sntn

∣∣ si ∈ S, ti ∈ T
}
⊂ R.

If a and b are ideals, then so is a · b and, since both a and b are ideals,

a · b ⊂ a, a · b ⊂ b.

The reader should convince him- herself of this.

Definition 18. Assume that a ⊂ OK is an ideal, then we define the
conjugate ideal to be

ā :=
{
ā | a ∈ a

}
.

The norm of a is defined as the ideal

N(a) = a · ā.

Observe that this is an ideal (ref. definition 17). Clearly, N(a) = N(ā),
and if a = (a), then

N(a) = N((a)) = (a)(ā) = (a)(a) = (a2).

Lemma 9. The norm of a is a principal ideal, N(a) = (a), a ∈ OK . In
addition,

N(a) =
(
#(OK/a)

)
.

The last claim of lemma 9 is actually the general definition of the ideal norm.
However, for quadratic fields this is equivalent to the one given in definition 18.

We will often be sloppy and write N(a) = a.

5.2 � Unique factorisation of ideals �

Theorem 18. Let p ∈ Spec(OK) be a prime ideal. Then there is a unique
prime p ∈ Spec(Z) such that

p | (p), i.e., such that (p) ⊂ p.
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We will often write p | p instead of p | (p).

Proof. Factor N(p) = p1p2 · · · pn. Since N(p) = p · p̄ we see that

p · p̄ = p1p2 · · · pn ⇐⇒ p | p1p2 · · · pn ⇐⇒ (p1p2 · · · pn) ⊂ p.

There is no restriction in assuming that n = 2. Hence assume p1p2 ∈ p, with
p1 6= p2.

Since p is a prime ideal we have that p1 ∈ p or p2 ∈ p. Suppose both p1
and p2 are in p. This implies that, for all a, b ∈ Z, ap1 + bp2 ∈ p. However,
p1 6= p2 so gcd(p1, p2) = 1 and by Bézout’s identity there are x, y ∈ Z such
that xp1 + yp2 = 1. Hence, 1 ∈ p which implies that p = OK , which is a
contradiction.

From lemma 8 and theorem 18, we see that if p is prime, then n in lemma 8
must be p where p | p.

Example 11. Let K = Q(
√
−5). Theorem 16 implies that

OK = Z[
√
−5] = Z + Z

√
−5.

We can observe the factorisations

21 = 3 · 7 = (1 + 2
√
−5)(1− 2

√
−5). (8)

The factors here are all irreducible. Indeed, suppose, for instance 7 = ab
for some a, b ∈ OK . Then N(7) = N(a)N(b) implies that N(a) = ±7. If
a = a1 + a2

√
−5, we get a21 − 5a22 = ±7. This is easily seen to have no

solution for a1, a2 ∈ Z. Similarly, if (1 + 2
√
−5) = ab, we get

N(1 + 2
√
−5) = N(a)N(b) ⇐⇒ −19 = N(a)N(b).

However 19 is a prime so either N(a) = ±19 and N(b) = ∓1 or vice versa.
Just as above, these lead to equations that are not solvable over Z.

As a consequence the factors in (8) are irreducible. They are also not
associates since neither of the factors are invertible in OK . Therefore the
two factorisations in (8) are unique and so OK = Z[

√
−5] is not a UFD.

Even though it is not in general possible to uniquely factor elements it is
always possible to factor ideals.

Theorem 19. Let a be an ideal in OK . Then there is unique set of primes{
p1, p2, . . . , pn

}
⊂ Spec(OK)

such that
a = p1p2 · · · pn.

This theorem is proved in much greater generality in the last section.
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A natural question is: how do we recognise the elements in Spec(OK)? We
have already remarked that a necessary condition for

p = (n, a+ bλ) = Zn+ Z(a+ bλ)

to be prime, is that n = p and that b = ±1 or b = ±p (cf. lemma (8)). Hence
we can assume that b = 1 since

p = Zn+ Z(a+ bλ) = b(Z(n/b) + Z(a/b+ λ))

(What on earth do I mean here???)
We will answer the above question fully in the next section.

6 . Ramification and Quadratic Reciprocity /

Recall theorem 13, parts of which we restate and reformulate here for easy
reference:

Theorem 20. Let K = Q(i). Since −1 ≡ 3 (mod 4), we see that

OK = Z[i] = G.

Let p ∈ Spec(Z).

(a) The following statements are equivalent:

(i) p = 2 or p ≡ 1 (mod 4);

(ii) y2 ≡ −1 (mod p) has a solution;

(iii) p = a2 + b2 = (a+ bi)(a− bi) ∈ Z[i].

(b) In addition,

(i) 2 = (1 + i)(1− i) = −i(1 + i)2;

(ii) if p ≡ 1 (mod 4) then p = pp̄, where p ∈ Spec(Z[i]) is a prime;

(iii) if p ≡ 3 (mod 4) then p ∈ Spec(Z[i]).

We would like to generalise this to all quadratic number fields. The problem
is that the proof of the above theorem hinged crucially on the property that
Z[i] is a Euclidean ring, a property that is very rare among the rings OK .

First, note that the splitting behaviour of p in Z[i] is connected to the
solution of the equation y2 + 1 = 0 in Fp. Note also that ∆(Z[i]) = −4. Hence,
for p 6= 2, part (a) in the theorem can be reformulated as (check!)

p = (a+ bi)(a− bi) ⇐⇒
(

∆

p

)
= 1 ⇐⇒ p ≡ 1 (mod 4).

The aim now is to extend, as much as possible, these equivalences to all quadratic
number fields.
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6.1 � Ramification �
Recall that, by convention, (a/p) = 1 is equivalent to y2 = a has two distinct
solutions in Fp. If p ∈ Spec(OK) then p̄ ∈ Spec(OK).

Theorem 21. Let K = Q(
√
D)/Q be a quadratic number field with ring

of integers OK and p ∈ Spec(Z) an odd prime. Then,

(a) (
∆

p

)
= 1 =⇒ p = pp̄, for some p ∈ Spec(OK),

with p 6= p̄;

(b) (
∆

p

)
= −1 =⇒ p ∈ Spec(OK),

(c) or, if p | ∆, then p = p2 for some p ∈ Spec(OK).

Observe that the three cases are mutually exclusive.

Definition 19. In the (distinct) cases in theorem 21 above, the prime p
is said to be, respectively, split (or unramified), inert or ramified in
OK .

Proof.

The following is a specialisation to quadratic number fields of a theorem due to
Dedekind.

Theorem 22. Let K = Q(
√
D) be a quadratic number field with ring of

integers OK . Put P (y) = y2 −D.
The reduction P̄ (y) of P (y) modulo p is either irreducible over Fp or

factor into two (not necessarily unique) linear factors.

(a) If p 6= 2, then

(i) P̄ (y) is irreducible over Fp, implies that p ∈ Spec(OK);

(ii) P̄ (y) = (y + a)(y − a), implies

p = (p, a+ λ)(p, a− λ) = (Zp+ Z(a+ λ))(Zp+ Z(a− λ)),

and

(iii) P̄ (y) = (y + a)2, implies that p = (p, a+ λ)2.

(b) If p = 2, then either 2 ∈ Spec(OK) or 2 = p2 for some p ∈ Spec(OK).

The theorem follows from theorem 21 and lemma 8.
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The representations of the primes in theorem 22 are not unique. For
instance, in K = Q(

√
7), the ideals (13,−8−3

√
7) = (13, 5 + 10

√
7), since

−8 ≡ 5 (mod 13) and −3 ≡ 10 (mod 13).

6.2 � Quadratic Reciprocity, again �

6.3 � Prime ideals and Spec(OK) �

6.4 � The Zariski topology on Spec(OK) �

6.5 � Fractional and invertible ideals �

Definition 20. A fractional ideal Λ is an OK-module on the form

Λ = OKw1 + OKw2 + · · ·+ OKwn ⊂ K, wi ∈ K.

Observe that Λ need not be a subset of OK . A fractional ideal inside OK

is an ordinary ideal.
The inverse to Λ is the module

Λ−1 :=
{
z ∈ K

∣∣ z · Λ ⊆ OK

}
⊂ K.

Note that (check this!)

Λ · Λ−1 = (1) = OK ,

justifying the term “inverse”.

If one needs to be very specific at some point one often use the term integral
ideal for ideals in OK .

It is not obvious that the definition of Λ−1 makes sense. In other words that
Λ−1 is also a fractional ideal. For simplicity we will grant this as a fact.

6.6 � The class group �

7 . Number fields and relative field extensions /

Theorem 23. Let a be an ideal in OK . Then there is unique set of primes{
p1, p2, . . . , pn

}
⊂ Spec(OK)

such that
a = p1p2 · · · pn.

Lemma 10. For every ideal a ⊆ OK there are non-zero prime ideals p1, . . . , pr
such that p1 · · · pr ⊆ a.
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Lemma 11. Let p be a prime ideal in OK . Define

p−1 := {a ∈ K | a · p ⊆ OK}.

Then a · p−1 6= a for every non-zero ideal a in OK . Notice that a ⊆ ap−1 since
1 ∈ p−1.

Proof of Lemma 10. Let S be the set of all ideals such that the statement of the
lemma does not hold, and assume that S is non-empty. Since OK is noetherian
the set S must have a maximal element, a. Furthermore, a cannot be a prime
ideal so there are b, c ∈ OK such that bc ∈ a but b 6∈ a, c 6∈ a. Clearly, a ⊂ a+(b),
a ⊂ a + (c) and (a + (b))(a + (c)) ⊆ a. Since a is maximal with respect to not
containing a product of prime ideals, a + (b) and a + (c) do. But this together
with (a + (b))(a + (c)) ⊆ a implies that a also does, a contradiction.

Proof of Lemma 11. Let a ∈ p, a 6= 0. Then by the previous lemma there are
primes p1, . . . , pr such that p1 · · · pr ⊆ (a) ⊆ p. We can assume that r is the
smallest possible such that this is true. Then one of the pi’s, say p1, is contained
in p since if not, then we could choose aj ∈ p \ pj with a1 · · · ar ∈ p; but since
p is prime, aj ∈ p, for some j, a contradiction. This implies that p1 = p since
p1 is maximal. We have that p2 · · · pr 6⊆ (a), so there is a b ∈ p2 · · · pr such that
b 6∈ aOK , i.e., a−1b 6∈ OK . However, we have that bp ⊆ (a) so a−1bp ⊆ OK ,
implying that a−1b ∈ p−1, so p−1 6= OK .

Let a be a non-zero ideal with generators a1, . . . , an (since OK is noetherian
every ideal is finitely generated, another standard fact of noetherian rings).
Assume that p−1a = a. Then for every b ∈ p−1 we have

bai =
∑
j

Aijaj , where Aij ∈ OK .

This is equivalent to
b−A11 −A12 . . . −A1n

−A21 b−A22 . . . −A2n

...
...

. . .
...

−An1 −An2 . . . b−Ann



a1
a2
...
an

 = 0.

Denote the square-matrix by W . By Cramer’s rule we get

det(W )a1 = det(W )a2 = · · · = det(W )an = 0, =⇒ det(W ) = 0.

Hence b is integral over OK (expand det(W )); so b ∈ OK since OK is integrally
closed, and thus p−1 = OK , a contradiction. Therefore, p−1a 6= a and the proof
is finished.

Now we can prove Theorem 23.

Proof of Theorem 23. We begin by showing existence. Let S be the set of
proper non-zero ideals that cannot be decomposed into prime ideals. The same
argument as in the proof of Lemma 10 shows that there is a maximal element
a ∈ S. This ideal is not prime so is included in a prime (maximal) ideal(c) p.

(c)This is a fact from ring theory (following from Zorn’s lemma): every ideal is contained in
a maximal ideal.
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We get
a ⊆ ap−1 ⊆ pp−1 ⊆ OK .

However, Lemma 11 shows that a ⊂ ap−1 and p ⊂ pp−1 ⊆ OK strictly. Since p
is maximal (notice that ap−1 is an ideal for all non-zero ideals a) we must have
that

pp−1 = OK .

Clearly, a 6= p implies that ap 6= OK , hence, taking into account the maximality
of a in S and a ⊂ ap−1, the ideal ap−1 admits a prime decomposition

ap−1 = p1 · · · pn and then so does a = ap−1p = pp1 · · · pn,

a contradiction.
To show uniqueness assume that a can be decomposed as

a = p1p2 · · · pn = q1q2 · · · qm.

The definition of prime ideals can be re-phrased as

ab ⊆ p⇒ a ⊆ p or b ⊆ p ⇐⇒ p | ab⇒ p | a or p | b.

Now, p1p2 · · · pn = q1q2 · · · qm implies that p1|qi for some 1 ≤ i ≤ m. Since p1
is maximal, p1 = qi. Hence, multiplying with p−11 and using that p1p−11 = OK ,
we can cancel p1 = qi. Continuing like this shows that n = m and exactly one
of the qj ’s correspond to a given pi. The proof is finished.
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