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Abstract
The explicit reciprocity law of Bloch–Kato (a later, conjectured, generalization
was given by Perrin-Riou and subsequently proved by Colmez) is a fundamental
result in the context of p-adic Hodge theory, p-adic Galois representations and
L-functions of motives. In this paper we investigate possible relations between
Bloch–Kato reciprocity and p-adic L-functions, on the one hand, and twisted
derivations and (non-associative) algebraic structures that these form, on the
other. We are able to show a close relationship between the Bloch–Kato law
in the special case of Tate motives, and we construct, for general motives (in
their crystalline representations), “Coleman maps” in the sense of recent papers
by A. Lei, D. Loeffler and S.L. Zerbes, which might give new interesting p-adic
L-functions when applied to Euler systems.

1 Introduction

This paper concerns explicit reciprocity laws, p-adic L-functions, and their (pos-
sible) relation to twisted derivations. Explicit reciprocity laws are often formu-
lated as relations (or dualities) between arithmetic, geometric and analytic ob-
jects and generally provide, often conjecturally, deep information on the objects
involved. The reciprocity law that will concern us here is the explicit law of
Bloch–Kato [BK90] and Perrin-Riou [PR94] (which is a vast generalization of
the reciprocity law in local class field theory). This law is expressed using p-adic
Hodge theory and involves crystalline realizations of motives (essentially p-adic
representations of Galois groups) and their p-adic L-functions.

The constructions concerning p-adic L-functios that follow, works for all
motives (in their crystalline realizations) but due to the complexities involved
(and the author’s limitations) the explicit reciprocity law is only discussed in
the simplest case of the Tate motives Q(j).

The main underlying algebraic structure underlying this paper is a twisted
version of a Lie algebra. In fact, we define a hom-Lie algebra L/A as a non-
associative algebra over a (commutative) ring A, with product 〈〈 ·, · 〉〉 , such that

(i) 〈〈x, x 〉〉 = 0, for x ∈ L, and

(ii) 	x,y,z
(
〈〈σ(x), 〈〈 y, z 〉〉 〉〉 + qσ · 〈〈x, 〈〈 y, z 〉〉 〉〉

)
= 0.
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Here σ is an endomorphism of L, qσ ∈ A and 	x,y,z denotes cyclic permutation
of x, y, z. See definition 2.2 for the precise definition. Notice that if σ = id (this
implies that qσ = 1) we get the definition of a Lie algebra.

As a short historical account on the emergence of hom-Lie algebras, it is
probably fair to say that it started, like many other things, with Euler and
the study of “q-analogues” of special functions. The primordial protagonist for
this paper, namely the notion of q-difference (or q-differential) operator was
considered by F.H. Jackson who studied these operators, and their inverses, “q-
integrals”, in the early twentieth century. To recall the classical setting, let σ
be the automorphism σ(t) = qt on C((t)), where q ∈ C×. Then the q-difference
operator is defined as

∂q(f(t)) :=
σ(f)− f
σ(t)− t

=
f(qt)− f(t)

(q − 1)t
.

In the limit q → 1, we get the ordinary derivation. A short remark on the
q-integral is found in remark 2.5 below.

Later, q-derivations were generalized and studied by ring-theorists in the
guise of “σ-derivations”, i.e., linear operators ∂σ satisfying a twisted Leibniz
rule, ∂σ(ab) = ∂σ(a)b + σ(a)∂σ(b), especially in the context of so called Ore
(after Ø. Ore) extensions of rings.

In addition, q-analogues of different objects turn up on a day-to-day basis
in combinatorics, special functions, functions over finite fields, quantum groups
(these are often Ore extensions, also known as skew polynomial rings), num-
ber theory and mathematical physics (“q-deformations”) to name a few areas.
However, it is only relatively recently that q-difference operators have begun
to interest arithmetically inclined researchers. In the early years of the present
century, Y. André [And01], L. di Vizio [DV02] and others started investigating
q-calculus in the context of number theory and arithmetic geometry. In addi-
tion, q-derivations made a recent appearance in (integral) p-adic Hodge theory
as a q-deformed de Rham complex in the announcement [BMS15].

The notion of a hom-Lie algebra was introduced in [HLS06] as an attempt
to put an algebraic structure on spaces of σ-derivations, analogously to Lie al-
gebras for ordinary derivations. However, at the time hom-Lie algebras were
introduced we were unaware of any possible number-theoretic applications. In-
stead, the main motivating examples were q-deformation algebras appearing in
physics (mostly from quantum field theory). One such example is the Virasoro
algebra, which in the centreless version (also known as the Witt algebra) makes
a disguised appearance later in this note. As indicated above, many of these
were constructed using q-deformed derivations, i.e., q-difference operators, but
a general underlying algebraic structure was lacking.

Observing (we were of course not the first ones to do this) that q-difference
operators are special cases of so-called σ-twisted derivations (σ-derivations, σ-
differential operators, . . . ), with σ an endomorphism on some algebra underlying
the structure (algebras of functions on some space), we defined a twisted mul-
tiplication of such σ-derivations. From the resulting structure we abstracted
the notion of hom-Lie algebra (and later for more general σ-derivations, quasi-
hom-Lie algebras and more generally quasi-Lie algebras). Later other people
generalized this in different directions, but the notion originates as algebras of
σ-twisted derivations.

2



The starting point of the present project was when I noticed the striking
similarity between the structure constants of a certain type of hom-Lie algebras
on the one hand, and Euler factors appearing in the explicit reciprocity laws of
Bloch–Kato [BK90] and Perrin-Riou [PR94], on the other. I had the subsequent
idea that it could be possible to “generate” explicit reciprocity laws as structure
constants of hom-Lie algebras. Due to my limited abilities I didn’t get very far,
but in this note I present some vague indication that something along these lines
might be possible. I will leave this as a project to explore for someone more
able than me.

The paper is organized as follows. First, in section 2 comes a short recap
concerning twisted derivations and hom-Lie algebras. Here we only very briefly
indicate the main points and refer to [Lar17] for full details. Section 3 is a short
summary of the relevant material from the theory of (ϕ,Γ)-modules and p-adic
Hodge theory.

In section 4 comes the first applications of hom-Lie algebras applied to (ϕ,Γ)-
modules, and in particular, explicit reciprocity laws. In this section we first
study the structure of the hom-Lie algebras coming from twisted derivations
attached to the ϕ- and Γ-structures. In particular we prove that the hom-
Lie algebras are generated, as left modules over certain (“period”) rings, by
one element, and we compute the products explicitly. By observing that the
structure constants appearing are exactly certain elements appearing in the
Bloch–Kato reciprocity law for Qp(j), we turn to a more detailed study of the
relationship in section 5.

Finally, in section 6 we construct p-adic “L-functions” from a hom-Lie al-
gebra that is a p-deformation of the Lie algebra sl2. The first part of section
6 is devoted to the construction of this p-deformed sl2 and studying weight
modules of this hom-Lie algebra. Lastly, we use this algebra to generalizing the
construction of Coleman maps given in [LLZ10] and [LLZ11], which then, when
applied to Euler systems, provide p-adic analytic functions that could be viewed
as p-adic “L-functions” of some motive. If these functions are interesting is a
question that I leave for the future to judge.

One final remark: there are many open threads and unexplored possibilities
in this paper. The reasons for not going further is primarily due to (1) the
author’s abilities and (2) to not overstate the paper’s importance by letting it
grow beyond any reasonable bound. Anyone interested in pursuing any idea is
much encouraged to do so.

Acknowledgements

I would like to thank Antonio Lei for answering my many questions and com-
menting on preliminary versions of the paper. Being a mere dabbler in Iwasawa
theory and p-adic Hodge theory, having him correcting and assuring me at times
is highly appreciated.

2 Hom-Lie algebras and twisted derivations

All commutative rings will be assumed associative and unital.
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2.1 Generalities
Let A be a commutative algebra over a commutative domain k, and let σ : A→
A be a k-linear map on A. Then a twisted derivation (or σ-derivation as in the
introduction) on A is a k-linear map ∂ : A→ A satisfying

∂(ab) = ∂(a)b+ σ(a)∂(b).

We can generalize this as follows. LetA and σ be as above, andM ∈ ob(Mod(A)).
The action of a ∈ A on m ∈M will be denoted a.m. Then, a twisted derivation
on M is k-linear map ∂ : M →M such that

∂(a.m) = ∂A(a).m+ σ(a).∂(m), (2.1)

where, by necessity, ∂A : A→ A is a twisted derivation on A (in the first sense).
We call ∂A the restriction of ∂ to A. Finally, a twisted module derivation is a
k-linear map ∂ : A→M such that

∂(ab) = b.∂(a) + σ(a).∂(b),

for σ ∈ End(A). Normally we will not differentiate between left and right mod-
ule structures, but there are times when such a distinction would be necessary.

We will sometimes refer to the above as σ-twisted (module) derivations if we
want to emphasize which σ we refer to.

Let σ ∈ End(A) and denote by σ∗A := A ⊗A,σ A, the extension of scalars
along σ. This means that we consider A as a left module over itself via σ,
i.e., a.b := σ(a)b. The right module structure is left unchanged. If M is an
A-module, we put

σ∗M := (σ∗A)⊗AM = A⊗A,σ M,

i.e., M is endowed with left module structure a.m := σ(a)m, and once more,
the right structure is unaffected. We now note that a σ-derivation dσ on A is
actually a derivation d : A→ σ∗A and conversely. Indeed,

d(ab) = d(a)b+ a.d(b) = d(a)b+ σ(a)d(b).

In the same manner, a σ-derivation dσ : A → M is a derivation d : A → σ∗M ,
and conversely. Therefore, there is a one-to-one correspondence between σ-
derivations dσ : A→M and derivations d : A→ σ∗M .

Example 2.1 (The “universal” example). Let M be an A-module. Suppose
σσσ : M → M is σ-semilinear, i.e., σσσ(a.m) = σ(a).σσσ(m), for a ∈ A and m ∈ M ,
where σ ∈ End(A). Then, a small computation shows that for all b ∈ A,
∂ := b(id−σσσ) : M →M , is a σ-twisted derivation on M . Notice that if M = A,
we automatically get σσσ = σ.

We will denote the (left) A-module of σ-twisted derivations on A (or M) as
Dσ(A) (respectively, as Dσ(M)).

2.2 Difference modules
Definition 2.1. A σ-difference ring, or σ-ring for short, is a ring A together
with a σ ∈ End(A); a σ-difference module, or σ-module, (M,σσσ) is a module over
a difference ring (A, σ) together with a σ-linear endomorphism σσσ.
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A σ-module can be viewed as a difference equation, in the exact same way
as a differential module can be viewed as a differential equation. Now, let (E,σσσ)
be a σ-difference module over a σ-difference ring (A, σ). Put δσ := t(id−σ) for
some t ∈ A.

Consider the map

∇(σ) : E → A · ε⊗A E, m 7→ ε⊗ t(id−σσσ)(m), (2.2)

where A · ε is the canonical rank one A-module with basis ε. This map satisfies
a twisted Leibniz rule:

∇(σ)(am) = ε⊗
(
t(id−σ)(a)m

)
+ ε⊗

(
aσt(id−σσσ)(m)

)
=
(
t(id−σ)(a) · ε

)
⊗m+ aσ · ε⊗ t(id−σσσ)(m),

i.e.,
∇(σ)(am) = ∂σ(a) · ε⊗m+ aσ∇(σ)m.

In addition, we can easily see that

∇(σ) ◦ σσσ = q · σσσ ◦ ∇(σ),

where q = σ(t)/t.

Lemma 2.1. Keeping the notation from above, there is a canonical σ-twisted
connection ∇(σ)

M given by (2.2). Conversely, localizing at t if necessary, given a
σ-twisted connection we have a canonical σ-difference module (M∇, ϕ) as the
kernel of ∇(σ).

Lemma 2.2. Let A ∈ ob(Com(k)) be a σ-difference k-algebra and suppose
there is an x ∈ A, such that x− σ(x) ∈ A×. Let, in addition, M be a σσσ-module
M . Then any σ-twisted derivation on M is of the form

∆σ = (x− σ(x))−1∂A(x)(id−σσσ),

where ∂A is the restriction of ∆σ to A. Furthermore, if M is torsion-free over
A, then A ·∆σ = Dσ(M) is free of rank one.

Proof. See [Lar17, Lemma 2.4].

Lemma 2.3. If A is a UFD, and σ ∈ End(A), then

∆σ :=
id−σ
g

generates Derσ(A) as a left A-module, where g := gcd((id−σ)(A)), the greatest
common divisor of the set (id−σ)(A).

Proof. This is a special case of [HLS06, Theorem 4].

Notice that the first lemma and the second lemma say slightly different
things. The second lemma states that g is a factor in (id−σ)(a) for all a ∈ A,
and can be cancelled.
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2.3 Algebras of twisted derivations
Let M be an A-module. Recall that the k-module of σ-twisted derivations is
denoted

Dσ(M) :=
{
∂ ∈ Endk(M) | ∂(a.m) = ∂A(a).m+ σ(a).∂(m)

}
and is a left A-modules. The A-module Dσ(A) is certainly not a Lie algebra.

2.3.1 Equivariant hom-Lie algebras

Let G be a group, A a k-algebra and M an A-module.

Definition 2.2. An equivariant hom-Lie algebra forG over A is an A[G]-module
M together with a k-bilinear product 〈〈 ·, · 〉〉 on M such that

(hL1.) 〈〈 a, a 〉〉 = 0, for all a ∈M ;

(hL2.) 	a,b,c
(
〈〈 aσ, 〈〈 b, c 〉〉 〉〉 + qσ · 〈〈 a, 〈〈 b, c 〉〉 〉〉

)
= 0, for all σ ∈ G and some qσ ∈ A.

A morphism of equivariant hom-Lie algebras (M,G) and (M ′, G′) is a pair
(f, ψ) of a morphism of k-modules f : M → M ′ and ψ : G → G′ such that
f ◦ σ = ψ(σ) ◦ f , and f 〈〈 a, b 〉〉M = 〈〈 f(a), f(b) 〉〉M ′ .

Notice that the definition implies that for a morphism

(f, ψ) : (M,G)→ (M ′, G′)

we must have f(qσ) = qψ(σ).
We get a hom-Lie algebra when we simply consider one σ ∈ G. Notice that

for σ = id we get a Lie algebra.

Remark 2.1. Actually, one can make sense of the proposition that hom-Lie
algebras are Lie algebras “in a suitably twisted category” (see [CG11]).

2.3.2 The hom-Lie algebra structure on Dσ(M)

Let, as before, A ∈ ob(Com(k)) and let σ ∈ End(A). Denote by δσ a σ-twisted
derivation on M whose restriction to A is ∂, i.e., δσ ∈ Dσ(M) and ∂ ∈ Dσ(A).
Assume that σ(Ann(δσ)) ⊆ Ann(δσ), where

Ann(δσ) := {a ∈ A | aδσ(m) = 0, for all m ∈M},

and that
∂ ◦ σ = q · σ ◦ ∂, for some q ∈ A. (2.3)

Form the left A-module

A · δσ := {a · δσ | a ∈ A}.

Define
〈〈 a · δσ, b · δσ 〉〉 := σ(a) · δσ(b · δσ)− σ(b) · δσ(a · δσ). (2.4)

This should be interpreted as

〈〈 a · δσ, b · δσ 〉〉 (m) := σ(a) · δσ(b · δσ(m))− σ(b) · δσ(a · δσ(m)), (2.5)

for m ∈M . We now have the following fundamental theorem.
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Theorem 2.4. Under the above assumptions, equation (2.4) gives a well-
defined k-linear product on A · δσ such that

(i) 〈〈 a · δσ, b · δσ 〉〉 = (σ(a)∂(b)− σ(b)∂(a)) · δσ;

(ii) 〈〈 a · δσ, a · δσ 〉〉 = 0;

(iii) 	a,b,c
(
〈〈σ(a) · δσ, 〈〈 b · δσ, c · δσ 〉〉 〉〉 + q · 〈〈 a · δσ, 〈〈 b · δσ, c · δσ 〉〉 〉〉

)
= 0,

where, in (iii), q is the same as in (2.3).

Corollary 2.5. The A-module A · δσ is a hom-Lie algebra.

For proofs of these statements, see [HLS06].

2.4 The Jackson sl2

For the rest of the paper, we always assume that char(k) 6= 2, where k is a prime
field. Most of the constructions go through without this assumption, but this
would require different sets of generators and some more work.

Let R be any commutative k-algebra (with char(k) 6= 2), and B := R[t, t−1]
the ring of Laurent polynomials over R. The Witt Lie algebra W is the Lie
algebra of derivations of B. It is a classical fact that

W := DerR(B) = B · t d
dt

and it is easily checked that the Lie brackets are given as

[ei, ej ] = (j − i)ei+j , with ei := ti+1 d

dt
, i ∈ Z.

Observe that there is a copy of sl2(R) inside W spanned by {e−1,−2e0,−e1}.
It is customary to put e := e−1, h := −2e0 and f := −e1. Obviously we then
get

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

The element h span the Cartan subalgebra of sl2.

Remark 2.2. In the classical Lie-theoretic context, R = C and W is geomet-
rically the vector fields on the unit circle. However, this was not the case Witt
himself studied. His interest was the case B = Fq[t1, t2, . . . , tn]/(tq1, t

q
2, . . . , t

q
n),

his interest stemming from finite group theory.

Fix σ ∈ Endk(B). Since we are only interested here in the simplest possible
case we will assume that σ(t) = qt, for some q ∈ R× and σ|R = id. We will now
deform W in the “σ-direction” in the sense that we replace t ddt by

∇(σ) :=
(
(1− q)t

)−1
(id−σ).

In more well-known parlance, we will “q-deform” W .
Define the q-number [n]q to be

[n]q := 1 + q + q2 + · · ·+ qn−1 =
1− qn

1− q
, q 6= 1.
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Notice that for n > 0, [−n]q = −q−n[n]q. Then, putting ei := ti+1∇(σ), a simple
calculation shows that

〈〈 ei, ej 〉〉 =
(
[j]q − [i]q

)
ei+j .

We denote the resulting hom-Lie algebra Wq. It can be beneficial to observe
that, if q = ζn is an n-th root of unity, then WZ/n :=

{
Wqa

∣∣ 0 ≤ a ≤ n− 1
}
is

an equivariant hom-Lie algebra over Z/n.
A small calculation shows that the set{

eeeσ := e−1, hhhσ := −2e0, fffσ := −e1

}
, (2.6)

generates a sub-hom-Lie algebra, the Jackson sl2, in Wq with products

〈〈hhhσ, eeeσ 〉〉 = 2eeeσ, 〈〈hhhσ, fffσ 〉〉 = −2qfffσ, 〈〈eeeσ, fffσ 〉〉 =
q + 1

2
hhhσ. (2.7)

Notice that q = 1 gives back the above presentation of sl2. We put

Jq :=
(

SpanR
(
{eeeσ,hhhσ, fffσ}

)
, (2.7)

)
.

The name “Jackson sl2” for the q-deformed sl2 given by (2.7) was introduced
in [LS07]. In this note we denote it by Jq. It is rather easy to convince oneself
that Jq is simple (as hom-Lie algebra) for all q 6= 0. Obviously

J−q := SpanR{eeeσ,hhhσ} and J+
q = SpanR{hhhσ, fffσ}

are sub-hom-Lie algebras of Jq; in fact, they are Lie algebras. As above we note
that

JZ/n :=
{
Jqa

∣∣ 0 ≤ a ≤ n− 1
}

is an equivariant hom-Lie algebra over Z/n, whenever q is an n-th root of unity.

Remark 2.3. Let L be a hom-Lie algebra. It would obviously be very interest-
ing to classify all sub-hom-Lie algebras inside L that are actually Lie algebras.

Observe that Jq is a sub-hom-Lie algebra of Wq. The construction given
in [LS07] is slightly different but the result is the same. Also, we originally
constructed it only over fields of characteristic zero, but the same applies for
any commutative ring of characteristic not 2 (in which case one has to take
another set of generators).

Remark 2.4. A natural question is of course: when are two Jq1 and Jq2 , q1 6= q2,
isomorphic? This seems to be a rather difficult question involving determining
K-rational points on a certain algebraic variety.

Remark 2.5. Associated to the σ-derivation ∇(σ), there is an inverse called
the Jackson σ-integral, defined formally by inverting id−σ:∫

fdσt := (1− q)
∞∑
i=0

tσi(f) = (1− q)
∞∑
i=0

tf(qit).

It is natural to wonder if this has any uses in p-adic integration (for instance
for p-adic measures) and p-adic Hodge theory.
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2.5 Weight modules
Exactly as for the Lie algebra sl2 one can define the notion of weight modules
for Jq. It is important to note that the same construction can be generalized to
the whole Wq.

As (2.4) indicates, the correct definition of a hom-Lie module is as follows.
Let L be a hom-Lie algebra over a ring B, with product 〈〈 ·, · 〉〉 . Then a hom-Lie
algebra module M is a B-module with an action of L such that

〈〈 a, b 〉〉 (m) = σ(a) · (b ·m)− σ(b) · (a ·m) , a, b ∈ L. (2.8)

Proposition 2.6. Suppose that L = B ·∆σ, for ∆σ a σ-derivation on B. The
endomorphism σ is extended to L by σ(b ·∆σ) := σ(b) ·∆σ. If M is a σσσ-module
over (B, σ), then M is a hom-Lie algebra module over L under (2.8).

Proof. This follows directly from the above definitions, together with (2.5).

As a consequence,

Corollary 2.7. A difference equation (M,σσσ) over a difference ring (B, σ) defines
a canonical hom-Lie algebra module.

Let now M be a vector space over a Q-algebra R with an action of Jq.
Observe that we do not need to assume that M is a hom-Lie module over Jq
at this point. Assume that v ∈ M is an eigenvector of hhhσ with eigenvalue
ξ = ξ(v) ∈ R. The eigenvalue ξ is called a weight for M and

Mξ := {w ∈M | hhhσ · w = ξw}

the weight space of weight ξ in M .
We put

v−1 := 0, vk :=
1

[k]q!
fffkσv, k ≥ 0, with v0 = v.

The linear span Mv :=
⊕∞

k=0Rvk is called a weight module of weight ξ for Jq.

Proposition 2.8. We have

fffσ · vk = [k + 1]qvk+1,

hhhσ · vk =
(
ξ(v)qk − 2[k]q

)
vk,

eeeσ · vk =

(
ξ(v)qk−1(q + 1)

2
− [k − 1]q

)
vk−1.

Notice that when q = 1 we get the ordinary weight theory for sl2.

Proof. The proof consists of straightforward computations using induction and
(2.7) together with (2.8), but it is somewhat hard to attack it correctly, so we
include some hints. Suppose we are interested in computing hhhσ(v1) (the case v0

is clear by definition). Notice that v1 = fffσv0. Then we should have

σ(hhhσ)
(
fffσ(v0)

)
− σ(fffσ)

(
hhhσ(v0)

)
= 〈〈hhhσ, fffσ 〉〉 = −2qfffσ(v0),

whence,
σ(hhhσ)

(
fffσ(v0)

)
= σ(fffσ)

(
hhhσ(v0)

)
− 2qfffσ(v0).
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By definition (yes, this is the “correct” definition!)

σ(eeeσ) = eeeσ, σ(hhhσ) = qhhhσ, σ(fffσ) = q2fffσ,

so, rewriting the above we get

hhhσ(v1) = hhhσ
(
fffσ(v0)

)
= qfffσ

(
(hhhσ(v0)

)
− 2v1.

Since hhhσ(v0) = ξ(v)v0, we get

hhhσ(v1) = ξ(v0)qfffσ(v0)− 2v1 = (ξ(v0)q − 2)v1.

The rest is by induction and the other cases follows similarly.

The standard examples are M = R[t], or its finite-dimensional truncations
Mn = R[t]/(tn), with v0 = − ξ2 t, for ξ ∈ R, and with Jq given its natural
presentation as q-differential operators. This gives weight modules of weight ξ.

More generally, letM be any σσσ-module over (R[t], σ). Then we get a natural
weight module for Jq. Notice that if M is of finite rank as an R-module and q
is not a root of unity, then (possibly up to a localization) the hhhσ-eigenvectors
vk are linearly independent over R and so generate a finite rank R-submodule
of M that is also a Jq-module.

3 (ϕ,Γ∞)-modules

3.1 Rings of periods and (ϕ,Γ∞)-modules
We need some basics from p-adic Hodge theory. The following recollection will
be superficial at best. The detailed constructions of the rings that will follow
are rather complicated and we refer to, e.g., [Ber04a], and the references given
therein, for more details.

In the following we let K0 be a finite unramified extension of Qp and let K
be a finite totally ramified extension of K0. Hence, if k is the residue class field
of K then K0 = W (k)[p−1]. We denote tha canonical Frobenius morphism on
K0, by σK0

.
Let Ka denote an algebraic closure of K. Throughout V will be a p-adic

representation of GK := Gal(Ka/K), i.e., a Qp-vector space with a continuous
action of GK .

Put K∞ := ∪n≥0K(µpn), where K(µpn) denotes the field, generated over K,
by the pn-th roots of unity in Ka. We have the following diagram of extensions

K0 K

Γ∞

GK

K∞
HK

Ka K̂a = Cp

Hence HK = Gal(Ka/K∞) and Γ∞ = GK/HK . The group Γ∞ decomposes as
Γ∞ = D × Γ, where D := Gal(K(µp)/K) and Γ = Gal(K∞/K(µp)). We will
normally consider only the case where K = K0. The Iwasawa algebra of Γ∞ is

Λ(Γ∞) = Zp[D][[1− γ]],
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for some topological generator γ of Γ. For L/Qp a finite extension, we can
extend this as

ΛoL
(Γ∞) = oL[D]⊗Zp

Zp[[1− γ]], and ΛL(Γ∞) = ΛoL
(Γ∞)⊗oL

L.

We also introduce the distribution algebra

HL(Γ∞) :=
{
f ∈ L[D][[1− γ]] | f converges on D◦

}
,

where D◦ is the open unit disc in Cp. We can identify ΛL(Γ∞) with the elements
in HL(Γ∞) that are bounded on D◦.

We will from now assume that we are given a Qp-algebraBBB with a continuous
action of GK and a Frobenius morphism ϕ. Let ω ∈ BBB be a distinguished
element, which in the cases we will consider will be either the element t :=
log([ε]), or the element π := [ε]− 1. Here [ε] is the Teichmüller lift of a coherent
sequence of pn-th roots of unity in a certain canonical characteristic p ring. We
refer to [Ber02] or [Ber04a] for the details.

For any (topological) Qp-algebra SSS, we say that V is SSS-admissible if SSS ⊗Qp

V = SSSd as SSS[GK ]-modules. Here d := dimQp(V ). Observe that it is implicit here
that SSS has a continuous GK-action. Normally, SSS will also have a distinguished
“Frobenius” map ϕ, i.e., a Qp-linear map ϕ : SSS → SSS.

Let V be a p-adic representation which is SSS-admissible. Associated to every
SSS-admissible representation is a Dieudonné module defined as

DDDSSS(V ) :=
(
SSS ⊗Qp

V
)GK

.

When SSS has a σK0
-linear Frobenius ϕ, DDDSSS(V ) becomes a ϕ-module over SSSGK .

Typical examples of rings SSS are the period rings BBBcris, BBBst, AAA and BBB of
Fontaine, the “plus” rings AAA+, BBB+ and BBB+

rig, as well as the “daggered” rings BBB†

and BBB†rig of Berger, Colmez and others.
The only difference between theAAA- andBBB-rings is that in theBBB-variants, p is

invertible, while in the AAA-variants this is not the case; in fact, often BBB = AAA[1/p].
In some cases we will need to invert the element ω (for instance, ω = π is not
invertible in plus-rings, and ω = t is not invertible in daggered rings).

Put SSSK := SSSHK . Note that this ring has an induced action of Γ∞. An
SSSK-vector space M with a semilinear action of ϕ, commuting with a semilinear
action of Γ∞, is called a (ϕ,Γ∞)-module; if the canonical

ϕ∗M := SSSK ⊗SSSK ,ϕM →M

is an isomorphism, M is an étale (ϕ,Γ∞)-module. This last is equivalent to M
having a ϕ-stable basis. For a p-adic representation V , the Dieudonné module

DDDSSS,K(V ) := (SSS ⊗Qp
V )HK

is a (ϕ,Γ∞)-module over SSSK .
To simplify the discussion below we will assume from now on that K = K0.

All the constructions below go through without this assumption, but there is
no immediate pay-off for the resulting notational inconvenience that thereby
ensues.

We define the rings AAA+
K , BBB+

K , AAAK and BBBK as

AAA+
K := oK [[π]], BBB+

K := AAA+
K [p−1] = AAA+

K ⊗oK
K

11



and
AAAK := ̂oK [[π]][π−1]p̂, BBBK := AAAK [p−1],

where the subscript p̂ means that the completion is taken with respect to p.
Observe that BBB+

K 6= K[[π]] (as one might, as I was for a long time, be tempted
to think).

There are canonical injections AAA+
K ↪→ AAA+ and BBB+

K ↪→ BBB+. Furthermore, let
BBB be the p-adic completion of BBBunr

K inside a certain ring B̃BB that won’t be defined
here.

One can prove that the local field extension BBB/ϕ(BBB) is of degree p and so
one can define the important averaging (or trace) operator

ψ : BBB → BBB, ψ(x) := p−1ϕ−1TrBBB/ϕ(BBB)(x).

This operator commutes with GK and can be extended to all period rings SSS
and SSSK that we will consider. Extending ψ to the first factor of SSS ⊗ V , we see
that it can also be extended to all relevant Dieudonné modules. Essentially by
construction one has

ψ(ϕ(x)a) = xψ(a), ψ(xϕ(a)) = ψ(x)a, x ∈ SSS, a ∈DDDSSS(V ),

in particular ψ(ϕ(x)) = x.
Since we assume that K = K0 we can give the action of ϕ and γ on π

explicitly as

ϕ(π) = (1 + π)p − 1, and γ(π) = (1 + π)χ(γ) − 1.

In addition, we can assume that χ(γ) = 1 +pn ∈ 1 +pnZp = U (n)(Zp), for some
n ∈ N.

The ring AAAK is a discrete valuation ring, hence a principal ideal domain
(PID), and therefore a unique factorization domain (UFD). The same applies
to BBB+

K . Since oK is the ring of integers in a local field, it is a regular PID, hence
a regular UFD, and so oK [[π]] is also UFD. The ring BBBK is even a field. Finally,
the ring BBB+

rig,K is defined as

BBB+
rig,K :=

f(π)

∣∣∣∣∣ f(T ) =
∑
i≥0

fiT
i, fi ∈ K, converging on D◦ ⊂ Cp

 ,

where D◦ is the open unit disc. The associated Dieudonné module is defined as

V 7→DDD+
rig(V ) := BBB+

rig,K ⊗BBB+
K
DDD+(V ).

Notice that we haven’t actually defined DDD+, referring instead to e.g., [Ber02]
for details.

It is possible to recover DDDcris(V ) knowing DDD+
rig(V ). In fact, a theorem of

Berger states that

DDDcris(V ) =
(
DDD+

rig(V )[t−1]
)Γ∞

,

and, in case V is positive (see 6.3 for what this means), we get the stronger
statement

DDDcris(V ) =
(
DDD+

rig(V )
)Γ∞

.
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4 p-adic hom-Lie algebras and (ϕ,Γ∞)-modules

We denote by χ the cyclotomic character χ : GK → Z×p . The main virtue of
the chosen element t ∈ SSS is that it satisfies (see [Ber02, p. 222] for instance)

ϕ(t) = pt ∈ SSS and γ(t) = χ(γ)t ∈ SSSK , γ ∈ Γ∞.

From now on, V will denote a p-adic representation of GK over Qp. The
dimension over Qp will be denoted by d. The Tate twist of V is as usual defined
as

V (r) := V ⊗Qp
Qp(r), where Qp(r) := Qp ⊗Qp

ε⊗r,

where GK acts on ε through Γ∞ via the cyclotomic character by γ(ε) := χ(γ)ε
and extended to Qp(r) as

γ(a⊗ ε⊗r) := χ(γ)ra⊗ ε⊗r, a ∈ Qp.

We extend the action of ϕ to ε by

ϕ(ε⊗r) := prε⊗r, r ∈ Z.

This implies that

DDDSSS,K(V (r)) = DDDSSS,K(V )⊗ ε⊗r, with ϕDDDSSS,K(V (r)) = p−rϕDDDSSS,K(V )

in order to compensate for the extra factor pr that appears (the ϕ-structures
are invariant under Tate twists on the ϕ-module side; only the Γ∞-structure is
affected by the Tate twists).

Example 4.1. Important special cases of the above are:

DDD(Qp(r)) = DDD(Qp)⊗ ε⊗r = (SSS ⊗Qp
Qp)G ⊗ ε⊗r

=

{
K0 ⊗ ε⊗r = K0(r), if DDD = DDDcris, with G = GK

SSSK ⊗ ε⊗r = SSSK(r), if DDD = DDDSSS,K , with G = HK .

Observe that in the crystalline case, there is no action of GK and in particular
no action of Γ∞.

What follows now is a sequence of theorems corresponding to different situ-
ations of interest. The proofs are, if not word-for-word identical, easily adapted
to the proof of the first instant of the statement (which in turn follows directly
from previously proven statements). Not all of these results are used later, but
simply recorded for completeness.

4.1 ϕ-rings
First, observe that even if p is not invertible, 1− pr is (for r ≥ 1), since p is in
the maximal ideal of OK0

. Therefore, since SSS is a K0-algebra, 1−pr is invertible
in SSS.

Put
∂ := (1− p)−1(id−ϕ) : SSS → SSS.
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Clearly ∂(t) = t and ∂ ◦ ϕ = ϕ ◦ ∂. Therefore, SSS · ∂ ⊆ Dϕ(SSS) comes equipped
with a canonical hom-Lie algebra structure by theorem 2.4, with q = 1.

From now on, adjoin to SSS, if necessary, the inverse of t. In order to avoid
excessively heavy notation we still denote this ring SSS. Under this assumption,
we put

∇(ϕ) := t−1∂ =
(
(1− p)t

)−1
(id−ϕ).

We have the following theorem.

Theorem 4.1. The left SSS-module Dϕ(SSS) is free of rank one over with generator
∇(ϕ). We also have

∇(ϕ) ◦ ϕ = p · ϕ ◦ ∇(ϕ),

and as a consequence Dϕ(SSS) can be endowed with a canonical hom-Lie algebra
structure.

Proof. The theorem follows from a straightforward computation and an appli-
cation of lemma 2.2 and theorem 2.4 with x = t and σ = ϕ.

Remark 4.1. If t−1 /∈ SSS, then there is no à priori reason why Dϕ(SSS) should be
free of rank one since there may be no elements y ∈ SSS such that (id−ϕ)(y) ∈ SSS×.

4.2 ϕ-modules
Let DDD be any ϕ-module over SSSK . Suppose first that t /∈ SSSK . The primary
interest under this assumption is the case SSS = BBBcris, when SSSK = K0. Then, as
before, Dϕ(DDD) and Dϕ(SSSK) can be identified as hom-Lie algebras. We cannot
in general claim that this module is free of rank one, for the same reason as in
remark 4.1 (but with t instead of t−1, of course). On the other hand we still
have that the submodule SSSK · ∂ comes with a hom-Lie algebra structure with
q = 1.

In the particular case of primary interest to us, namely, when SSS = BBBcris, we
have that SSSK = K0. This is a field and so in fact

Dϕ(DDD) = Dϕ(K0) = K0(id−ϕ).

The same applies to any isocrystal over K0.
Put

∇(ϕ)
a := a(id−ϕ), a ∈ SSSK .

This ∇(ϕ)
a is a Qp-linear operator on D such that

∇(ϕ)
a (bv) = (a(id−ϕ)(b)) v + ϕ(b)∇(ϕ)

a (v), b ∈ SSSK , v ∈DDD.

Therefore, DDD becomes a left Dϕ(SSSK)-module, in addition to Dϕ(DDD) making
sense as a module over SSSK .

Assuming t−1 ∈ SSSK and replacing SSS in theorem 4.1 with SSSK , automatically
yields (with a−1 = (1− p)t)

Theorem 4.2. LetDDD be a ϕ-module over SSSK . Then the left SSSK-module Dϕ(DDD)
is free of rank one over with generator ∇(ϕ). In addition,

∇(ϕ) ◦ ϕ = p · ϕ ◦ ∇(ϕ).

Therefore, Dϕ(DDD) can be endowed with a canonical hom-Lie algebra structure,
naturally identified with the hom-Lie algebra structure on Dϕ(SSSK).
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Remark 4.2. The operator ∇(ϕ) is almost a “monodromy operator”, so DDD is
nearly a (ϕ,N)-module with N = ∇(ϕ). The problem causing it to not achieve
this status, is that ∇(ϕ) is not K0-linear.

4.3 (ϕ,Γ∞)-modules
Of course, the ϕ-action is the same as above, so only the Γ∞-action is new (but
essentially obvious in light of the previous theorems).

We have that γ(t) = χ(γ)t on SSSK . Suppose that (1− χ(γ))t ∈ SSS×K and put

∇(γ) := ((1− χ(γ))t)−1(id−γ).

Observe that, since χ(γ) ∈ 1+pnZp for some n ∈NNN , 1−χ(γ)s ∈ pZp, so is only
invertible in the rings where p is. This excludes the AAA-rings.

Remark 4.3. The module Dγ(DDD) is a first approximation of the Lie algebra
Lie(Γ∞) acting on DDD. In fact, the operator ∇(γ) is, up to a factor, a first-order
truncation of Sen’s differential operator Θ as given in, for instance, [Ber02].
This operator can be seen to generate the action of Lie(Γ∞) on DDD. This shows
that DDD is actually a difference equation (in the guise of a difference module)
over SSSK .

Theorem 4.3. Let DDD be a (ϕ,Γ∞)-module over SSSK . Then the SSSK-module
Dγ(DDD) is free of rank one, generated by the element ∇(γ). We have

∇(γ) ◦ γ = χ(γ) · γ ◦ ∇(γ),

so Dγ(DDD) can be endowed with a canonical hom-Lie algebra structure.

We note the following easy proposition.

Proposition 4.4. The above operators satisfy the relations

∇(γ) ◦ ϕ = p · ϕ ◦ ∇(γ), ∇(ϕ) ◦ γ = χ(γ) · γ ◦ ∇(ϕ),

and

pt · ∇(ϕ) ◦ ∇(γ) = ∇(γ) ◦ (p− ϕ), t · ∇(γ) ◦ ∇(ϕ) = ∇(ϕ) ◦ (1− χ(γ)γ).

Proof. Simple computations.

For the next theorem we denote by SSS′ either of SSS or SSSK .

Theorem 4.5. Assume that SSS′ is a UFD and put gσ := gcd((id−σ)(SSS′)), where
σ = ϕ or γ. Let DDD be a ϕ- or (ϕ,Γ∞)-module over SSS′. Then Dσ(DDD) is free of
rank one over SSS′ with generator

∆(σ) :=
id−σ
gσ

.

Furthermore,

∆(σ) ◦ σ =
σ(gσ)

gσ
· σ ◦∆(σ)

and so Dσ(DDD) is a hom-Lie algebra over SSS′.
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Proof. The first statement follows from lemma 2.3. The commutation relation
is easily proved, noting that if gσ divides a, then σ(gσ) divides σ(a) and gσ
divides σ(gσ) (by definition of greatest common divisor).

Observe first that the statement of the theorem is independent of t. In
addition, notice that g need not be invertible for this statement. A greatest
common divisor is only well-defined up to units, but it is easy to see that any
other g will give the same module and an isomorphic hom-Lie algebra structure.

4.4 Explicit hom-Lie products
We will now compute hom-Lie products.

4.4.1 Hom-Lie products with SSS = BBBcris

First of all we note the anomalous case of SSS = BBBcris (applicable to any isocrys-
tal). Hence, let V be any crystalline representation. Then DDDcris(V ) is a ϕ-
module over K0 = (BBBcris)

GK . We have that

Dϕ(K0) = K0(id−ϕ) = K0 · ∂,

with products

〈〈 a · ∂, b · ∂ 〉〉 = (ϕ(a)b− ϕ(b)a) · ∂, a, b ∈ K0.

Obviously, we here have ϕ = ϕ0 = ϕK0
. A ϕ-derivation on DDDcris(V ) is on the

form
∂cris : DDDcris(V )→DDDcris(V ); ∂cris := a

(
id−ϕDDDcris(V )

)
.

Recall that, we can identify Dϕ(DDDcris(V )) and Dϕ(K0) as hom-Lie algebras, but
not as modules of operators (since Dϕ(DDDcris(V )) has another Frobenius).

Taking Tate twists we have DDDcris(V (r)) = DDDcris(V ) ⊗ ε⊗r. This is still a
ϕ-module over K0 but now

∂cris = a
(
id−ϕDDDcris(V (r))

)
= a

(
id−p−rϕDDDcris(V )

)
and

DϕDDDcris(V (r))
(DDDcris(V (r))) = Dp−rϕDDDcris(V )

(DDDcris(V )⊗ ε⊗r).

From the above we see that it is important to distinguish between the space
Dϕ(DDDcris(V )) as an algebra, and as a module of operators.

4.4.2 Hom-Lie products over (ϕ,Γ∞)-rings where t is invertible

Let DDD denote a (ϕ,Γ∞)-module over SSSK . When writing σ below, we mean
either ϕ or γ, and q is then either p or χ(γ), depending on which σ we use.

Recall that ∇(σ) = ((1 − q)t)−1(id−σ) and that Dσ(SSSK) and Dσ(DDD) are
generated by ∇(σ) as free rank-one SSSK-module. Put

δδδiσ := ti∇(σ), i ∈ Z.

Note that δδδ0
σ = ∇(σ). Clearly, δδδiσ acts on DDD for all i ∈ Z, so DDD is a Dσ(SSSK)-

module (from the left), and also δδδiσ ∈ Dσ(DDD). Every D ∈ Dσ(SSSK) and Dσ(DDD)
can be written (uniquely) as D = aδδδiσ, for some a ∈ SSSK and i ∈ Z.
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Remark 4.4. We see that ∂ = δδδ1 and this element generates the sub-hom-Lie
algebra SSSK · ∂ ⊆ Dσ(DDD). I don’t know if this is in fact the whole Dσ(DDD). Since
in all cases we consider the ring SSSK is a domain, so the SSSK-module SSSK · ∂ is at
least free of rank one.

We note the formula

δδδiσ(tn) = [n]qt
n−1+i, i, n ∈ Z.

With this notation we can give the hom-Lie products explicitly, using theorem
2.4 (and a small computation, using the above formulas), as:

〈〈 aδδδiσ, bδδδjσ 〉〉 = β
(
qiσ(a)b− qjσ(b)a

)
δδδi+j−1
σ , a, b ∈ SSSK , (4.1)

where we have put β := (1− q)−1. For notational convenience we introduce the
operator δ̂δδ := β−1δδδ0

ϕ. Notice, for instance, that

〈〈 δ̂δδ, bδδδjϕ 〉〉 =
(
b− pjϕ(b)

)
δδδj−1
ϕ ,

and in particular the case when b = 1:

〈〈 δ̂δδ, δδδjϕ 〉〉 =
(
1− pj

)
δδδj−1
ϕ .

Introducing the projection operator

(−)[ : Dσ(SSSK) −→ SSSK , aδδδiσ 7→ a

we see that we can produce Euler factors

〈〈 δ̂δδ, bδδδjϕ 〉〉 [ = b− pjϕ(b),

and in particular then,
〈〈 δ̂δδ, δδδjϕ 〉〉 [ = 1− pj .

Extending this to operators we can construct the Euler factor operators

〈〈 δ̂δδ, (−)δδδjϕ 〉〉 [ = id−pjϕ.

These will prove useful later.

4.4.3 Hom-Lie products over (ϕ,Γ∞)-rings where t is not invertible

Now, if t is not invertible in SSSK , we have three options. Either: (1) we look at
the subalgebra K[t] ⊆ SSSK , or (2) we adjoin t−1, or (3) we use the generator π
instead of t.

Looking at the first case (1), we notice that K[t] is a unique factorization
domain so, putting

∆(σ) :=
id−σ
gσ

, gσ := gcd
(
(id−σ)K[t]

)
= (1− q)t,

we have that Dσ(K[t]) is generated as a left K[t]-module by ∇(σ). With these
definitions, the arguments from the previous subsection goes through word-for-
word, with the same result (4.1).

In case (2), we use theorem 4.5 to construct the generator of Dσ(DDD) and the
induced hom-Lie algebra structure. Unfortunately, due to the more complicated
actions of ϕ and γ on π, the products in case (3) become too complicated to
write out in full generality.
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Remark 4.5. Using the above products one can consider Qp-linear maps as
follows. First of all,

〈〈 aδδδi∗,−〉〉 : D∗(SSSK)→ D∗(SSSK)

and
〈〈 aδδδi∗, (−)δδδj∗ 〉〉 : SSSK → D∗(SSSK)

can clearly be seen as Qp-linear operators. Further, fixing m ∈ DDD, we can
construct the operator

〈〈 aδδδi∗, (−)δδδj∗ 〉〉 (m) : SSSK →DDD.

These operators (and variants of them) can be useful to consider at times.

4.5 The hom-Lie algebra Dσ(BBBσ[t, t−1])

In this section, we let BBBσ denote either BBBϕ=1
cris , SSSϕ=1

K or K = SSSΓ∞
K , depending

on whether we use ϕ or γ. The ring BBBϕ=1
cris is a rather complicated ring, often

denoted BBBe (see [Ber08]).
We will in this section assume that t is invertible. Recall the operators

∇(σ) = ((1 − q)t)−1(id−σ). Recall also that it is not always true that 1 − q is
invertible in BBBσ when q = χ(γ). Observe that BBBσ[t, t−1] is a subalgebra of SSSK .

We put

Wσ := BBBσ[t, t−1] · ∇(σ) = BBBσ[t, t−1] · δδδ0
σ = Dσ(BBBσ[t, t−1]).

From (4.1) we find

〈〈δδδiσ, δδδjσ 〉〉 =
(
[i]q − [j]q

)
δδδi+j−1
σ , i, j ∈ Z. (4.2)

This is a hom-Lie algebra called the q-deformed Witt algebra (or simply q-Witt
algebra) in analogy with the Lie algebra case q = 1, which is the Lie Witt
algebra (although not the algebra Witt himself studied). It is rather easy to see
that Wσ is a simple hom-Lie algebra.

Remark 4.6. Actually, the relations for the q-Witt algebra in [HLS06] are
Z-graded. This is achieved by using a different set of generators (shifted in
degree by one). However, in what follows it is more convenient to use the above
generators.

When q is not a root of unity and BBBσ a field, there is a unique central
extension of Wσ called the q-Virasoro algebra (in analogy with the Lie case
q = 1). I expect that when q is an nth root of unity, there are n non-equivalent
central extensions but I have never checked this (but it certainly should be
done!). For more details, see [HLS06].

5 The case V = Qp(r) and Bloch–Kato reciprocity

In this section we will look at the special case where V = Qp(r), and a crystalline
GK-representation. We will not be able to be very detailed concerning some of
the constructions that follow, but we will refer the reader to the appropriate
places in the literature.
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Put
Kn := K(µn), U∞ := lim

←−
Un, B∞ := lim

←−
K×n ,

where Un := U(Kn) are the principal units in Kn, and the projective limits are
taken with respect to norm maps.

In [BK90] Bloch and Kato defined an “exponential map” from a Galois-
theoretic object to a certain cohomology group. Namely,

expV : DdR(V )/Fil0DdR(V ) −→ H1
e (K,V ),

induced from a connecting homomorphism in cohomology. When V is de Rham
(in particular if V is crystalline) expV is actually an isomorphism [BK90, The-
orem 4.1(ii)].

In the case V = Qp(r),

DdR(Qp(r))/Fil0DdR(Qp(r)) ' K0(r)

and
H1
e (K,Qp(r)) ' HomΓ(U∞,Qp(r)),

so
expQp(r) : K0(r)→ HomΓ(U∞,Qp(r)).

By the comment above, expQp(r) is an isomorphism (unless r = 0, in which case
the right-hand side is trivial).

There is another connecting homomorphism of importance. This is induced
from the exact sequence [BK90, (1.13)]

0 −→ Qp(r) −→ FilrBBB+
cris

id−p−rϕ−−−−−−→ BBB+
cris −→ 0.

Indeed, taking GK-invariants gives a morphism

∂r : K = H0(K,BBB+
cris) −→ H1(K,Qp(r)) = HomΓ(U∞,Qp(r)).

These two homomorphisms ∂r and expQp(r) are connected via the equality
[Sai15, Theorem 4.5.7]

expQp(r)(a)(τ) = −∂r
(
(id−p−rϕ)(a)

)
(τ), a ∈ K and τ ∈ GK . (5.1)

In addition, the explicit reciprocity law of Bloch–Kato ([BK90, Theorem 2.1]
with sign corrected in [dS95] and [Sai15, Theorem 4.1.1]) is given as

∂r(a) = − 1

(r − 1)!
TrK/Qp

(a · ΦrCW(−)) , (5.2)

where
ΦrCW : U∞ −→ K

is the r-th Coates–Wiles homomorphism (see e.g., [Sai15, 4.4.2]). Combining
(5.1) and (5.2), we write the reciprocity law as

expQp(r)(a) = − 1

(r − 1)!
TrK/Qp

(a · ΦrCW(−)) . (5.3)
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Define

expbQp(r)(a)(τ) := −∂r
(
b(id−p−rϕ)(a)

)
(τ), b ∈ K.0

This defines a group homomorphism (of additive groups)

E : Dϕ(K(r)) −→ Hom
(
K(r),HomΓ(U∞,Qp(r))

)
b(id−p−rϕ) 7−→ expbQp(r) .

Now, the question is: is it possible to generalize the Coates–Wiles homomor-
phism to some Φ̃rCW so that we can construct families of reciprocity laws,

expbQp(r)(a) = − 1

(r − 1)!
TrK/Qp

(
a · Φ̃rCW(−)

)
,

parametrized by b ∈ K via E. I have a feeling that this should be possible
in some form. A natural follow-up question would then be if it is possible to
extend to representations coming from other motives than Qp(r).

The generalized exponential map expb can be packaged into a larger object.
For this, recall the Euler factor operator

(id−p−rϕ) = 〈〈 δ̂δδ, (−)δδδ−rϕ 〉〉 [.

Instead of BBBcris we use BBB+
rig,K . Define the pairing

Exp : Dϕ

(
BBB+

rig,K [t−1]
)
× Dϕ

(
BBB+

rig,K [t−1]
)
−→

∏
k∈Z

HomΓ (U∞,Qp(k))

defined by

(aδδδi, bδδδj) 7−→ −∂i+j
(
b 〈〈 δ̂δδ, aδδδi−j 〉〉 [

)
∈ HomΓ(U∞,Qp(i+ j)).

Fixing a ∈ BBB+
rig,K and i this pairing specializes to

Expi
a

: Dϕ(BBB+
rig,K [t−1]) −→

∏
j∈Z

Hom (K,HomΓ(U∞,Qp(i+ j)))

bδδδjϕ 7−→ −∂
i+j
(
b 〈〈 δ̂δδ, a(−)δδδi−jϕ 〉〉 [

)
.

The case i = 0 is especially interesting:

Exp
a

:= Exp0

a
: Dϕ(BBB+

rig,K [t−1]) −→
∏
j∈Z

Hom (K,HomΓ(U∞,Qp(j)))

bδδδjϕ 7−→ −∂
j
(
b 〈〈 δ̂δδ, a(−)δδδ−jϕ 〉〉 [

)
.

This Ea defines a group morphism in the b-argument and, if a = 1, we get the
previous morphism E.

We can approach this from another angle, emulating the constructions in
[Ber03] (which are reformulations of the main theorems of [PR94] in terms
of (ϕ,Γ)-modules). This will be even more sketchy than the above and I will
assume that the reader is to a large extent well acquainted with the constructions
therein.
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The idea of Perrin-Riou is to extend the exponential map to a infinite family
of exponential maps over the whole tower K ⊂ K∞, namely,

expn,V : Kn ⊗K DDDcris(V ) −→ H1(Kn, V )

and then glueing these together mapping into the Iwasawa cohomology group
H1

Iw(K,V ) = lim←−H
1(Kn, V ) (the limit taken with respect to corestriction of

cohomology groups). Here we only consider the 0-th level K = K0.
Still assuming that V = Qp(r) is crystalline, we now look at the ring SSSK =

BBB+
rig,K [t−1]. In [Ber03, Prop. I.8] is constructed a group morphism

h1
K,V : DDD+

rig,K(V )ψ=1 −→ H1(K,V )

(we will discuss the map ψ later), which in the case V = Qp(r) reduces to

h1
K,V : BBB+

rig,K(r)ψ=1 −→ H1(K,Qp(r)) = HomΓ(U∞,Qp(r)).

Put
∇̃i := δδδ1

γ − [i]χ(γ).

One easily checks that

∇̃0

(
BBB+

rig,K

)
⊂ tBBB+

rig,K , and so ∇̃i−1 ◦ ∇̃i−2 ◦ · · · ◦ ∇̃0

(
BBB+

rig,K

)
⊂ tiBBB+

rig,K .

Then the same argument as in the beginning of [Ber03, II.2] is applicable and
so if y ∈ BBB+

rig,K ⊗DDDcris(Qp(r)) = BBB+
rig,K(r), then

∇̃i−1 ◦ ∇̃i−2 ◦ · · · ◦ ∇̃0(y) ∈DDD+
rig,K(Qp(r))ψ=1 = BBB+

rig,K(r)ψ=1.

Applying h1
K,Qp(r) to this element gives

Φy := h1
K,Qp(r)

(
∇̃i−1 ◦ · · · ◦ ∇̃0(y)

)
∈ H1(K,Qp(r)) = HomΓ(U∞,Qp(r)).

This element Φy, “should” be the the generalized Φ̃rCW, for some suitably chosen
y.

6 Coleman maps and p-adic L-functions

We will in this section look at the cases when SSSK is one of AAA+
K = oK [[π]],

BBB+
K = AAA+

K [1/p] = oK [[π]][1/p] or BBB+
rig,K . One should view BBB+

K as power series
converging, and bounded, on the open unit disc D◦, and BBB+

rig,K as those only
converging on D◦. There are thus natural inclusions

AAA+
K ⊂ BBB

+
K ⊂ BBB

+
rig,K .

Recall from the end of section 3.1 that we defined

DDD+
rig(V ) := BBB+

rig,K ⊗BBB+
K
DDD+(V ),

subsequently remarked that

DDDcris(V ) =
(
DDD+

rig(V )[t−1]
)Γ∞

and DDDcris(V ) =
(
DDD+

rig(V )
)Γ∞

,
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the last equality holding when V is positive. In addition,

BBB+
rig,K [t−1]⊗K DDDcris(V ) = BBB+

rig,K [t−1]⊗K DDD+
rig(V ) = DDD+

rig(V )[t−1],

by [Ber04b, II.3].
Let BBBσ :=

(
BBB+

rig,K

)ϕ=1 and recall the notation ∇(σ) =
(
(1 − q)t

)−1
(1 − σ),

where σ = ϕ or γ. We have the following inclusions:

BBBσ[t, t−1] · ∇(σ)
� _

��

= // Dσ
(
BBBσ[t, t−1]

)
� _

��
BBBσ[[t]][t−1] · ∇(σ)

� _

��

= // Dσ
(
BBBσ[[t]][t−1]

)
� _

��
SSSK · ∇(σ) = // Dσ(SSSK).

Hence, if DDD is a (ϕ,Γ∞)-module over SSSK , then we see that Dσ(BBBσ[t, t−1]) acts
on Dσ(DDD).

6.1 The ϕ-case
Recall the elements

eeeσ := ∇(σ) = δδδ0
σ, hhhσ := −2t∇(σ) = −2δδδ1

σ, fffσ := −t2∇(σ) = −δδδ2
σ,

defined in (2.6), where δδδiσ := ti∇(σ). In this section we look at the case when
σ = ϕ.

Now, inside SSSK we consider the subalgebra BBBσ[t, t−1] and form Jp:

〈〈hhhϕ, eeeϕ 〉〉 = 2eeeϕ, 〈〈hhhϕ, fffϕ 〉〉 = −2pfffϕ, 〈〈eeeϕ, fffϕ 〉〉 =
p+ 1

2
hhhϕ.

We immediately observe:

Proposition 6.1. The reduction of Jp modulo p is the solvable Lie algebra

〈〈hhhϕ, eeeϕ 〉〉 = 2eeeϕ, 〈〈hhhϕ, fffϕ 〉〉 = 0, 〈〈eeeϕ, fffϕ 〉〉 = hhhϕ,

over BBBσ/p.

We have made the scaling fffϕ → 1
2fffϕ in the proposition. Observe that the

reduction is not sl2(Fp). Hence we see (the known fact) that there are flat
deformations (lifts) of Lie algebras over Fp to Qp, that are not Lie algebras.

We will often view Jp in the canonical representation as ϕ-derivations. In this
representation one can see that Jp is invariant under the action of the Iwasawa
algebra.

Recall that β = (1 − p)−1 and that we assume K = K0. In what follows
we will use the ϕ-module DDDcris(V ) for illustration, but any other ϕ-module DDD
could equally well have been used.

Assume that there is an eigenvector v to ϕ in DDDcris(V ) with eigenvalue
λv. Clearly, v is also an eigenvector to id−ϕ with eigenvalue 1 − λv and to
hhhϕ = −2β(1− ϕ) with eigenvalue −2β(1− λv).
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Remark 6.1. We might need to extend scalars here to include the eigenvalues.
We work linearly over any such extension. For instance, if F is an extension of
Qp, then ϕ is F -linear on F ⊗Qp

DDDcris(V ), i.e., ϕ(a ⊗ bv) = a ⊗ ϕ(b)ϕ(v), for
a ∈ F , b ∈ K and v ∈ DDDcris(V ). In view of this, we will suppress any needed
extension in the notation.

Put u := ti ⊗ v ∈ BBB+
rig,K [t−1] ⊗K DDDcris(V ), for any i ∈ Z. This is now also

an eigenvector to hhhϕ with eigenvalue ξ(u) := −2β(1− piλv). We now put

uk :=
1

[k]p!
fffkϕu, k ∈ Z≥0, u0 = u, u−1 = 0

and define eeeϕ(u) = 0. Observe that uk ∈ BBB+
rig,K [t−1]⊗DDDcris(V ), for all k ≥ −1.

Proposition 6.2. The F -span of {uk} defines a Jp-weight module

Mp(ξ) ⊂ BBB+
rig,K [t−1]⊗K DDDcris(V )

of weight ξ(u) = −2β(1− piλv) and

fffϕ · uk = [k + 1]puk+1,

hhhϕ · uk = −2

(
pk(1− piλv)

1− p
+ [k]p

)
uk,

eeeϕ · uk = −
(
pk−1(1 + p)(1− piλv)

1− p
+ [k − 1]p

)
uk−1.

Recall that ϕ is linear over F .

Proof. This is clear from proposition 2.8.

Notice that, since we view eeeϕ, fffϕ and hhhϕ abstractly here, i.e., independent
on any particular representation (for instance involving ϕ), we can make a base
change and consider the module Mp(ξ)K

Mp(ξ)K :=

∞⊕
i=0

K · uk.

In other words, we can view Mp(ξ) as spanned over K.
For a fixed V we can construct (canonically) one Mp(ξ) for each eigenvalue

of ϕ on DDDcris(V ). Also, we can clearly parametrize Mp(ξ) by the eigenvalues λ,
since ξ is only dependent on λ.

Example 6.1. Suppose V = Qp(r). Then DDDcris(Q(r)) = K · e(r), where we
have put e(r) := ε⊗re with e the basis for the 1-dimensional K-spaceDDDcris(Qp).
We have

ϕr(e(r)) = ϕr(ε
⊗re) = p−rϕ(ε⊗re) := p−rλpre(r) = λe(r),

where ϕr is the Frobenius on DDDcris(Qp(r)). Now, ϕ(e) = e, so λ = 1. Let v be
e(r) and

u = ti ⊗ v ∈ BBB+
rig,K [t−1]⊗K DDDcris(Q(r)) = BBB+

rig,K [t−1]e(r),
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for some fixed i ∈ Z. Then

hhhϕ(u) = hhhϕ(ti ⊗ e(r)) = −2β(id−ϕr)(ti ⊗ e(r)) = −2β(1− pi)u.

We also see that

fffϕ(u) = fffϕ(u0) = −[i]p
(
ti+1 ⊗ e(r)

)
= u1 and eeeϕ(u) = 0,

the last equality by definition.
Hence, we get a canonical hom-Lie module Mp(ξ) = Mp(1) over Jp from

proposition 6.2.
It is important to observe that there are 1-dimensional crystalline represen-

tations where λ 6= 1. These can be constructed by twisting Qp(r) by unramified
characters.

Example 6.2. Let E/L be an elliptic curve over a finite extension L of Qp
Assume that E has good reduction over p. Then the Tate module Vp(E) :=
Qp⊗Zp

Tp(E) is crystalline at p with Hodge–Tate weights (−1, 0). The associated
ϕ-module DDDcris(Vp(E)) is

DDDcris(Vp(E)) = Qpeee1 ⊗Qpeee2,

with

[ϕ] =



(
α 0
0 pα−1

)
if E has ordinary reduction,

(
0 −1
p 0

)
if E has supersingular reduction.

It can be shown that α ∈ o×L .
In the ordinary case, we thus have the two ϕ-eigenvectors eee1 and eee2 and so

the elements
viα := ti ⊗ eee1, and vipα−1 := ti ⊗ eee2

in BBB+
rig,L[t−1]⊗Qp DDDcris(Vp(E)) are also eigenvectors for all i ∈ Z. Hence,

hhhϕ(viα) = −2β
(
1− piα

)
viα and hhhϕ(vipα−1) = −2β

(
1− pi+1α−1

)
vipα−1 .

Consequently we have two weight modules with weights ξα := −2β
(
1 − piα

)
and ξpα−1 := −2β

(
1− pi+1α−1

)
, respectively.

Now, in the supersingular case we need to extend to F := L(
√
−p) to have

eigenvalues, which are ±
√
−p. The corresponding eigenvectors are

√
−p : u+ := eee1 −

√
−peee2, −

√
−p : u− := eee1 +

√
−peee2.

Hence, with vi+ := ti ⊗ u+ and vi− := ti ⊗ u− we find

hhhϕ(vi+) = −2β
(
1− pi

√
−p
)
vi+ and hhhϕ(vi−) = −2β

(
1 + pi

√
−p
)
vi−.

We therefore get two weight modules with weights ξ+ := −2β
(
1− pi

√
−p
)
and

ξ− := −2β
(
1 + pi

√
−p
)
.

The supersingular case is a fibre in a two-parametric family of crystalline ϕ-
modules (see [BLZ04]) with parameters (ap, k), Hodge–Tate weights (−k+ 1, 0)
and

[ϕ] =

(
0 −1

pk−1 ap

)
.

As far as I’m aware, only the case ap = 0 and k = 2 is directly associated with
an elliptic curve when p > 2.
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6.2 The Γ∞-case
We put Jχ := Jχ(γ) to simplify. This hom-Lie algebra is now given by the
products

〈〈hhhγ , eeeγ 〉〉 = 2eeeγ , 〈〈hhhγ , fffγ 〉〉 = −2χ(γ)fffγ , 〈〈eeeγ , fffγ 〉〉 =
χ(γ) + 1

2
hhhγ .

Here, since χ(γ) ∈ 1 + pnZp for some n, and p 6= 2, we immediately observe:

Proposition 6.3. The reduction of Jχ modulo p > 2 is

〈〈hhhγ , eeeγ 〉〉 = 2eeeγ , 〈〈hhhγ , fffγ 〉〉 = −2fffγ , 〈〈eeeγ , fffγ 〉〉 = hhhγ ,

over BBBσ/p. In other words, Jχ/p ' sl2(Fp).

LetDDD(r) be a Γ∞-module. We fix, once and for all, a (topological) generator
γ of Γ. Recall that DDD(r) = DDD ⊗ ε⊗r and γ ∈ Γ∞ acts on v ⊗ ε⊗r as

γ
(
v ⊗ ε⊗r

)
= γ(v)⊗ γ(ε⊗r) = γ(v)⊗ χ(γ)rε⊗r = χ(γ)rγ(v)⊗ ε⊗r.

Let v ∈ DDD be an eigenvector to γ with eigenvalue λv. Then v, considered in
DDD(r), i.e., v ⊗ ε⊗r, has eigenvalue χ(γ)rλv. From this follows that v ⊗ ε⊗r is
an eigenvector to hhhγ = −2β(id−γ) with eigenvalue ξ(v) := −2β(1 − χ(γ)rλv).
Observe that β = (1− χ(γ))−1 now.

The following proposition is an exact analogue of proposition 6.2.

Proposition 6.4. The K-span of {uk} defines a Jχ-weight module Mχ,r(λ) of
weight ξr(v) := −2β(1− χ(γ)rλv) and

fffγ · vk = [k + 1]χ(γ)vk+1,

hhhγ · vk = −2

(
χ(γ)k(1− χ(γ)rλv)

1− χ(γ)
+ [k]χ(γ)

)
vk,

eeeγ · vk = −
(
χ(γ)k−1(1 + χ(γ))(1− χ(γ)rλv)

1− χ(γ)
+ [k − 1]χ(γ)

)
vk−1.

Here, for each χ and each eigenvalue λ, and r ∈ Z, we get a canonical
Mχ,r(λ).

Example 6.3. Assume once again that V = Qp(r). Then

DDD+
rig,K(Qp(r)) = BBB+

rig,K(r) = BBB+
rig,Ke(r).

Put vi := ti⊗e(r), i ≥ 0. These are eigenvectors to γ with eigenvalue χ(γ)r+iλ,
where γ(e) = λe, λ ∈ K. Hence,

hhhγ(vi) = −2β(1− χ(γ)r+iλ)vi,

and we get hom-Lie modules M i
χ,r(λ) as in proposition 6.4.

Remark 6.2. Observe the difference between the crystalline case and the case
involving Γ∞: in the first case, involving ϕ, we extendDDDcris(V ) toBBB+

rig,K , which
not needed in the Γ∞-case. On the other hand, it is not strictly needed in the
crystalline case either: take i = 0 and we actually get the case of simply looking
at the action on DDDcris(V ).
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6.3 Wach modules
Let V be a crystalline representation of K with weights in the interval [a, b] ⊂ Z.
The crystalline representation V is positive if b ≤ 0.

Definition 6.1. The Wach module associated with V is the unique finite rank
free BBB+

K-module NNN(V ) of rank rk(NNN(V )) = dimQp
(V ), satisfying

(a) NNN(V ) is stable under the action of Γ∞, and this action becomes trivial on
NNN(V )/πNNN(V );

(b) ϕ(πbNNN(V )) ⊆ πbNNN(V ), and

(c) xb−a annihilates πbNNN(V )/ϕ∗(π−aNNN(V )), where x := ϕ(π)/π and where
ϕ∗(π−aNNN(V )) denotes the BBB+

K-module generated by ϕ(π−aNNN(V )).

Notice that, unless V is positive, a Wach module is not necessarily stable
under ϕ. When V is positive, we can filter NNN(V ) as

Fili(NNN(V )) := {s ∈NNN(V ) | ϕ(s) ∈ xiNNN(V )}.

The Tate twist of a Wach module is defined by

NNN(V (r)) = π−rNNN(V )⊗ ε⊗r.

The following theorem is proposition III.4.2 in [Ber04b].

Theorem 6.5 (L. Berger). A p-adic GK-representation V with weights in [a, b]
is crystalline if and only if there is a Wach module NNN(V ) (with a, b as in the
definition). The associated functor

Cris(GK) Wach(BBB+
K), V 7→NNN(V )

is an equivalence of categories and there is an isomorphism ϕ-modules

DDDcris(V )
'−→NNN(V )/πNNN(V )

respecting the filtrations.

It is well-known that

BBB+
rig,K [t−1]⊗BBB+

K
DDD+(V ) = BBB+

rig,K [t−1]⊗K DDDcris(V ),

regardless of whether V is positive or not. Put

NNN rig(V ) := BBB+
rig,K ⊗BBB+

K
NNN(V ).

Clearly then,

NNN rig(V )[t−1] := BBB+
rig,K [t−1]⊗BBB+

K
NNN(V ) = BBB+

rig,K [t−1]⊗K DDDcris(V ).

We will consider

Dϕ(BBB+
rig,K [t−1]) = BBB+

rig,K [t−1] · ∇(ϕ)

and its submodule

Dϕ(BBBσ[t, t−1]) = BBBσ[t, t−1] · ∇(ϕ), BBBσ =
(
BBB+

rig,K

)ϕ=1

.

and we can construct weight modules on NNN rig(V )[t−1] as in section 6.1 and
proposition 6.2.
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Example 6.4. We have

NNN(Qp(r)) =
(
π−rBBB+

Kε
⊗r)e1, and NNN rig(Qp(r)) =

(
π−rBBB+

rig,Kε
⊗r)e1,

with

ϕ(e1) = x−re1, and γ(e1) =

(
γ(π)

π

)−r
χ(γ)re1,

where χ is the cyclotomic character.

The products in Dϕ(BBB+
rig,K [t−1]) are given by (4.1) and the induced prod-

ucts on Dϕ(BBBσ[t, t−1]) by (4.2). Representing Jp in terms of ϕ-derivations
we have Jp ⊂ Dϕ(BBBσ[t, t−1]) as hom-Lie algebras. The hom-Lie algebras Jp,
Dϕ(BBBσ[t, t−1]) and Dϕ(BBB+

rig,K [t−1]) act on NNN(V ) and NNN rig(V ) as ϕ-derivations.
Similarly with Jχ.

6.4 Coleman maps
Recall the operator ψ from 3.1.

Lemma 6.6. Let DDD be a ϕ-module over SSS, stable under ψ. Then DDDψ=0 is
stable under the action of t, i.e.,

t ·DDDψ=0 ⊆DDDψ=0.

The same conclusion holds for t−1 when this is defined.

Proof. In 3.1 we commented that ψ(ϕ(x)y) = xψ(y), for x ∈ SSS and y ∈ DDD.
Therefore, for y ∈DDDψ=0,

ψ(ty) = p−1ψ(ϕ(t)y) = p−1tψ(y) = 0.

The lemma follows.

In [LLZ10, Section 3.1] it is shown that

(id−ϕ)
(
NNN(V )ψ=1

)
⊆
(
ϕ∗NNN(V )

)ψ=0
,

which extends to the inclusion

(id−ϕ)
(
NNN rig(V )ψ=1

)
⊆ (ϕ∗NNN rig(V ))

ψ=0
.

Lemma 6.6 implies that

ti(id−ϕ)
(
NNN rig(V )ψ=1

)
⊆ (ϕ∗NNN rig(V ))

ψ=0
, i ≥ 0,

implying further that

aδδδiϕ(y) ∈
(
ϕ∗NNN rig(V )

)ψ=0 ⊗K K[t−1],

for y ∈
(
NNN rig(V )

)ψ=1, i ≥ 0, and a ∈ BBBσ. To simplify notation we write(
ϕ∗NNN rig(V )

)ψ=0
[t−1] :=

(
ϕ∗NNN rig(V )

)ψ=0 ⊗K K[t−1].
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Suppose

bti ⊗ n⊗ (t−1)0 ∈
(
ϕ∗NNN rig(V )

)ψ=0
[t−1], i ≥ 0, b ∈ BBB+

rig,K .

We extend the action of BBBσ[t] on
(
ϕ∗NNN rig(V )

)ψ=0
[t−1] to include the inverse

t−1 by postulating

at−1(bti ⊗ n) := abti−1 ⊗ n⊗ (t−1)0,

if i > 0 and
at−1(b⊗ n) := ab⊗ n⊗ t−1,

when i = 0. We can actually view this element as an element in(
ϕ∗NNN rig(V )

)ψ=0 ⊗K DDDcris(Qp(1))

if we so wish.

Proposition 6.7. There is a natural action of Jp on NNN rig(V ) such that(weights t?)

eeeϕ, fffϕ,hhhϕ :
(
NNN rig(V )

)ψ=1 →
(
ϕ∗NNN rig

(
V
))ψ=0

[t−1].

Proof. From above, we have an action of Dϕ(BBBσ[t, t−1]) on NNN rig(V ) such that

aδδδiϕ ·
((
NNN rig(V )

)ψ=1
)
⊆ (ϕ∗NNN rig(V ))

ψ=0
[t−1], i ≥ −1.

Consequently, by proposition 2.6, there is a hom-Lie algebra action of Jp, given
in terms of ϕ-derivations,

eeeϕ, fffϕ,hhhϕ : (NNN rig(V ))
ψ=1 →

(
ϕ∗NNN rig

(
V
))ψ=0

[t−1].

The proposition is thus proven.

One can visualize the maps in the proposition as(
NNN rig(V )

)ψ=1

ti(id−ϕ) ..

id−ϕ//
(
ϕ∗NNN rig

(
V
))ψ=0 � � //

(
ϕ∗NNN rig

(
V
))ψ=0

[t−1]

ti⊗id
��(

ϕ∗NNN rig

(
V
))ψ=0

[t−1].

We can view the image of Jp in
(
ϕ∗NNN rig

(
V
))ψ=0

[t−1] as being inside(
ϕ∗NNN rig

(
V
))ψ=0 ⊗K

(
DDDcris(Qp)⊕DDDcris(Qp(1))

)
.

Assume r ∈ Z is such that V (r) have non-negative Hodge–Tate weights.
Under the further assumption that there is no quotient of V isomorphic to
Qp(a), there is a natural isomorphism

h : H1
Λ(K,V (r))→

(
NNN(V (r))

)ψ=1
,

where
H1

Λ(K,V (r)) := H1
Iw(K,V (r)) ' H1(K,Λ⊗K V (r))
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denotes the Iwasawa cohomology of V (r). Hence, there is a natural injection

hrig : H1
Λ(K,V (r))→

(
NNN rig(V (r))

)ψ=1
.

Therefore, composing hrig with eeeϕ, fffϕ,hhhϕ, we can construct a family of maps

Jp ◦ hrig : H1
Λ(K,V (r)) −→

(
ϕ∗NNN rig

(
V (r)

))ψ=0
[t−1].

It is well-known from Iwasawa theory (see [CC98], for instance) that there
is a canonical bijection

Mel :
(
AAA+
K

)ψ=0 → ΛoK
(Γ∞) = oK [D]⊗Zp

Zp[[1− γ]],

called the Mellin transform, sending f(π) ∈
(
AAA+
K

)ψ=0 to the element g(1−γ) ∈
ΛK(Γ∞) such that g(1− γ)(1 + π) = f(π). This bijection can be extended to

Mel :
(
BBB+
K

)ψ=0 −→ ΛK(Γ∞).

In addition, Perrin-Riou proved [PR01, Proposition B.2.8] that Mel can be
extended to an isomorphism of H(Γ∞)-modules

Mel :
(
BBB+

rig,K

)ψ=0

−→ HK(Γ∞),

where we recall that

HK(Γ∞) =
{
f ∈ K[D][[1− γ]] | f converges on the open unit disc

}
.

The following proposition is Corollary 2.13 in [LLZ11].

Proposition 6.8. The module
(
NNN rig(V )

)ψ=0 is a free H(Γ∞)-module of rank
dimQp

(V ). In fact, for a basis {ê1, ê2, . . . , êd} ofDDDcris(V ), there is a BBB+
rig,K-basis

{e1, e2, . . . , ed} of NNN rig(V ) such that êi ≡ ei modπ, for all 1 ≤ i ≤ d, and such
that {

(1 + π)ϕ(e1), (1 + π)ϕ(e2), . . . , (1 + π)ϕ(ed)
}

is a H(Γ∞)-basis for
(
ϕ∗NNN rig(V )

)ψ=0.

Taking the r-th Tate twist, any x ∈
(
ϕ∗NNN rig(V (r))

)ψ=0 can thus be written
inside

(
ϕ∗NNN rig(V (r))

)ψ=0
[t−1] as

x =

(
d∑
i=1

(
fi(1− γ)(1 + π)

)
⊗ ϕ(π−rei ⊗ ε⊗r)

)
⊗ 1, fi(1− γ) ∈ H(Γ∞),

implying that

tjx =

(
d∑
i=1

(
fi,j(1− γ)(1 + π)

)
⊗ ϕ(π−rei ⊗ ε⊗r)

)
⊗ 1, j ≥ 0,

for some fi,j(1− γ) ∈ H(Γ∞). When j = −1, we instead get

t−1x =

(
d∑
i=1

(
fi(1− γ)(1 + π)

)
⊗ ϕ(π−rei ⊗ ε⊗r)

)
⊗ t−1.
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We note that for y ∈
(
NNN rig(V (r))

)ψ=1,

(id−ϕ)(y) ∈
(
ϕ∗NNN rig

(
V (r)

))ψ=0
,

so in the canonical BBB+
rig,K-basis for ϕ∗NNN rig(V (r)), the coordinates of (id−ϕ)(y)

define maps

Col(y) =


Col1(y)
Col2(y)

...
Cold(y)

 ∈ ((BBB+
rig,K

)ψ=0
)⊕d

.

If y ∈
(
NNN(V (r))

)ψ=1 ⊂
(
NNN rig(V (r))

)ψ=1, then these maps coincide with the
Coleman maps defined in [LLZ10, Section 3.1].

On the other hand, proposition 6.8 allows us to construct another set of
Coleman maps by considering (id−ϕ)(y) in the given H(Γ∞)-basis

(id−ϕ)(y) =

d∑
i=1

(
fi(1− γ)(1 + π)

)
⊗ ϕ(π−rei ⊗ ε⊗r), fi(1− γ) ∈ H(Γ∞),

and defining

ColΛ(y) =


f1(1− γ)
f2(1− γ)

...
fd(1− γ)

 ∈ H(Γ∞)⊕d.

Restricting once again to
(
NNN(V (r))

)ψ=1 gives us the maps ColΛ defined in
[LLZ10, Definition 3.13].

The point of defining two types of Coleman maps, is that the first is not
equivariant under the natural action of H(Γ∞), but the second one is. On the
other hand, there is a linear relation between them that can be written down
explicitly (see [LLZ10, Section 3]).

We will now generalize this by involving the action of Jp. First, since the
image of Jp is in

(
ϕ∗NNN rig

(
V (r)

))ψ=0
[t−1], we see that we can define

ColJp(y) =


Col1,Jp(y)
Col2,Jp(y)

...
Cold,Jp(y)

 ∈ ((BBB+
rig,K

)ψ=0
[t−1]

)⊕d
, (6.1)

by taking the coordinates of ti(id−ϕ)(y), i ≥ −1.
Let us rescale eee, fff and hhh (we skip ϕ in the notation from now on) as

eee 7→ eee

1− χ−r(γ)
, fff 7→ fff

1− χ2r(γ)
, hhh 7→ hhh

1− χr(γ)
. (6.2)

Since
(
NNN rig(V (r))

)ψ=0 is a H(Γ∞)-module,
(
NNN rig(V (r))

)ψ=0
[t−1] is in a natural

way a H(Γ∞)[t−1]-module, and so we can define

ColΛJp(y) =


f1(1− γ)
f2(1− γ)

...
fd(1− γ)

 ∈ (H(Γ∞)[t−1]
)⊕d

, (6.3)
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with the coefficients of fi(1− γ) in K[t−1]. By the rescaling (6.2), ColΛJp is now
H(Γ∞)-equivariant.

We summarize the above constructions in the following theorem.

Theorem 6.9. Let V (r) be a d-dimensional, crystalline representation with
weights in [a, b], 0 ≤ a ≤ b, and with no quotient isomorphic to Qp(a). Then
there are two families of maps

ColJp : (NNN rig(V (r)))
ψ=1 −→

((
BBB+

rig,K

)ψ=0
[t−1]

)⊕d
,

defined by (6.1) and the H(Γ∞)-equivariant map

ColΛJp : (NNN rig(V (r)))
ψ=1 −→

(
H(Γ∞)[t−1]

)⊕d
,

defined by (6.3), extending the Coleman maps defined in [LLZ10].

The following lemma was presented to me by D. Loeffler and I reproduce his
proof here with his permission.

Lemma 6.10. Let `0 := log(γ)/ log(χ(γ)). We have

Mel(tf(π)) = `0 · Tw
(
Mel(f(π))

)
, f(π) ∈ BBB+

rig,K . (6.4)

More generally, putting T := `0 · Tw,

Mel
(
tkf(π)

)
= Tk

(
Mel

(
f(π)

))
, k ≥ 1. (6.5)

In addition,

Mel
(
t−1f(π)

)
= T−1

(
Mel

(
f(π)

))
= Tw−1`

−1
0

(
Mel(f(π))

)
,

so (6.5) holds for all k ∈ Z. Observe that Tw−1 = Tw−1.

Proof. Clearly (6.5) follows from (6.4) by induction so only (6.4) needs to be
proven.

Big logarithm/Coleman

Theorem 6.11. Consequence for L-func.
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