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Abstract
In this paper we will use a particular non-commutative scheme to, among other
things, study the ramification properties of the field of p-torsion points on
an elliptic curve and its reduction properties. Also, we show that this non-
commutative space also allow us to use the p-torsion points to “parametrise”
classes in the p-torsion of the Brauer group of the base field.

1 Introduction

Let K be a local field with ring of integers oK and E/K an elliptic curve over
K with minimal regular model E/oK . Arithmetically it is interesting to study
the specialisation (reduction) of E to the special fibre of E. In this paper we
will use a non-commutative deformation theory (see [Lau02] or [ELS17]) and
non-commutative algebraic geometry to do exactly that.

A natural question is what non-commutative deformation theory and non-
commutative algebraic geometry can bring to the table in this context. As
deformation theory is the local study of an object in the moduli space of all such
objects, deformation theory can give information connected to the reduction of
these objects to characteristic p. Extension to non-commutative base rings as
versal deformation spaces, allows us to study the reduction properties of a family
of objects at the same time. In other words, how the objects deform (reduce)
together as a family. This simultaneous deformations are measured by the size
of certain Ext1-groups. In our case the family of objects are rational points on
non-commutative spaces constructed by using p-torsion points on E.

The starting point in the present approach is the following. Let p be a prime.
We will assume through most of the paper that p ≥ 3, but this is not necessary
at this point. Under the assumption that the p-torsion group E[p] has a K-
rational point, the field K(E[p]) generated by the coefficients of all p-torsion
points is known to fit in the following tower of fields

K K(ζp) K(E[p]),

where ζp is primitive p-th root of unity. In fact, K(E[p])/K(ζp) is a Kummer
extension (this is well-known but see [Yas13] for one reference)

K(E[p]) = K(ζp)[
p
√
x] = K(ζp)[T ]/(T p − x), x ∈ K.
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Put F := K(E[p]). Clearly, F encodes interesting arithmetic properties asso-
ciated with E and its p-torsion points. From the field F we will construct two
non-commutative algebras Jx and IIξ (the description of ξ comes below), with
associated non-commutative schemes, XJx and XIIξ , respectively, using non-
commutative deformation theory. Using these noncommutive algebras/schemes
we will study the specialisation of E to the special fibre. For simplicity we will,
in this introduction denote either of XJx and XIIξ , by X. In this paper we
will use a “soft” approach to non-commutative algebraic geometry, more meant
to be suggestive than actually essential in this particular instance. For a more
comprehensive discussion see [Lar23b] and the references therein.

Let me indicate the construction of Jx since this is slightly more simple. This
algebra is associated with the reduction modulo a prime ` 6= p. The algebra IIx
is used for the reduction modulo p itself.

Suppose oK → B → A is a general cyclic extension of an oK-algebra B
and let G be its automorphism group. Take an element σ ∈ G. The operator
∆ := a(id−σ) for a ∈ A acts on A and satisfies the generalised Leibniz rule
∆(bc) = ∆(b)c+σ(b)∆(c). Form the left A-module A ·∆. This can be endowed
with a nonassociatve algebraic structure turning it into a generalised Lie algebra
called a hom-Lie algebra (see section 2 for more details). Akin to the enveloping
algebra of a Lie algebra, so can one construct an associative “enveloping” algebra
of a hom-Lie algebra. The algebra Jx is then defined as the subalgebra of the
“enveloping” algebra of the hom-Lie algebra A·∆. In fact, Jx is a “q-deformation”
of the enveloping algebra of sl2 (see [LS07]).

Remark 1.1. Notice that A ·∆ captures information of the group action of G
on A. This transfers to naturally to Jx.

It turns out that Jx (and IIξ) satisfies some desirable ring-theoretic and ho-
mological properties. For instance, the algebra (or its associated non-commutative
scheme) is noetherian, normal, Auslander-regular, and Cohen–Macaulay (CM).
The definition of “Auslander-regularity” is not necessary here beyond it includ-
ing a condition of finite global dimension. Hence this is indeed a generalisation
of regularity in the commutative context. However, rings can be Auslander-
regular and still behave “singular” in the non-commutative realm. Indeed, as
we will see an Auslander-regular ring can have a singular centre. Similarly, a
non-commutative ring can be CM, but have a centre which is not. On the other
hand, the algebras we will consider here, will have CM centres. I refer to the
literature for the definition of Auslander-regular and Cohen–Macaulay in the
non-commutative case (a definition can be found in [Lar23a], for instance).

The paper is organised as follows. Section 2 is preliminary and contains,
for the reader’s benefit, the constructions of algebras related to twisted deriva-
tions. In particular, it includes the construction of an “infinitesimal enveloping
algebra”, Iq, that will crucially be used later. This section overlaps, by neces-
sity, some discussions from [Lar23a]. However, there are some differences in
presentation.

Section 2.3 introduces the so-called Kummer–Witt algebra W
1/n
x . This is

defined to be the “enveloping algebra” of the hom-Lie algebra A · ∆ where A
is a Kummer extension of B. This section also lists a number of ring-theoretic
properties satisfied by W

1/n
x and Iq.

Section 3 introduces the notion of non-commutative algebraic space that we
will use. Included is also a definition of rational points on such a space. The
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section following section 3 contains a recollection of polynomial identity algebras
and the definition of Jx and a description of its centre and some of the ring-
theoretic properties it enjoys. We also describe the non-commutative space XJx

and its set of one-dimensional rational points together with their infinitesimal
structure.

In section 5 we discuss ramification in cyclic extensions and its connection
to Jx. Then in section 6, which is the main part of the paper, we consider the
reduction properties of elliptic curves and relate these to properties of Jx and
IIξ and their associated spaces. In the case where F = K(E[`]) and ` 6= p we
use Jx. However, Jx does not give enough information in the case ` = p and
this is where IIx comes in. Let f be the conductor of E and d the number
of irreducible components of the special fibre Ē which are defined over k (the
residue class field of K). We now take ξ = ζf+d and IIζf+d . This choice might
seem ad hoc at first glance but it turns out to be a very fruitful choice.

The reduction properties of E in the case where ` = p are studied via a family
of one-dimensional rational points on XIIζf+d

. We pay particular attention to
additive reduction. It turns out that the only possible values for p in the case
where K is absolutely unramified are 2, 3, 5 and 7. En route to the construction
of the one-dimensional points alluded to above, we introduce a set of elements
θi ∈ F = K(E[p]). These are used in the last section to construct hyperplane
arrangements in XIIx and Brauer-classes in Br(K).

It is not an understatement to say that the study of K-rational p-torsion
points and their associated p-torsion fields K(E[p]) is an active field of study.
For instance, the recent paper [FK18] by Freitas and Kraus gives a complete
description of the degree [Q`(E[p]) : Q`] when ` 6= p ≥ 3; in [BP16] Bandini and
Paladino studies the generators of K(E[p]) where K is any field of characteristic
not equal to 2 or 3. The latter paper also indicate the complexity of the p-torsion
field with several examples. It is my hope that the present paper could also be
used to study the fields K([p]) as well as the p-torsion points themselves.

Acknowledgements
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Laudal deserves (as always) a special thanks for encouragement and all that.

Notation
We will adhere to the following notation throughout.

• All associative rings are unital. Unless otherwise stated all rings A,B, k
e.t.c., are associative.

• All modules are left modules unless otherwise explicitly specified. The
groupoid of (left) A-modules up to isomorphism is denoted Mod(A).

• The notation Max(A) denotes the set of maximal ideals, while Specm(A)
denotes the maximal spectrum of A, i.e., Max(A) together with the Zariski
topology.

• Z(A) denotes the centre of A.

• For p a prime in A, k(p) denotes the residue class field of p.
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2 Algebras related to twisted derivations

We should probably say a few things about the construction of the family of
algebras Jx(r), otherwise what follows will feel completely pulled from the mist.
Since the construction is spelled out in detail in [Lar23a] we will deliberately be
as brief as possible.

Throughout o is a commutative ring and A commutative o-algebra.

2.1 hom-Lie algebras
Suppose then that σ is a o-algebra endomorphism on A. Then a twisted o-
derivation (or σ-derivation) on A is an operator

∆(ab) = ∆(a)b+ σ(a)∆(b), a, b ∈ A.

Example 2.1. The canonical example of a σ-derivation is a map A → A on
the form

∆ := a(id−σ) : A→ A, a ∈ A.

In fact, for many algebras these types of maps are the only σ-derivations avail-
able.

Under certain conditions (which are satisfied in our case) one can prove the
following theorem (see [HLS06]).

Theorem 2.1. The A-module A ·∆ can be endowed with a o-linear product

〈〈 a ·∆, b ·∆ 〉〉 := σ(a) ·∆(b ·∆)− σ(b) ·∆(a ·∆), a, b ∈ A

satisfying

(i) 〈〈 a ·∆, b ·∆ 〉〉 = (σ(a)∆(b)− σ(b)∆(a)) ·∆;

(ii) 〈〈 a ·∆, a ·∆ 〉〉 = 0;

(iii) 	a,b,c
(
〈〈σ(a) ·∆, 〈〈 b ·∆, c ·∆ 〉〉 〉〉 + q · 〈〈 a ·∆,〈〈 b ·∆, c ·∆ 〉〉 〉〉

)
= 0,

where a, b, c ∈ A. The product is in particular non-associative.

Definition 2.1. A hom-Lie algebra is an A-moduleM together with a o-bilinear
product 〈〈 ·, · 〉〉 on M such that

(hL1.) 〈〈 a, a 〉〉 = 0, for all a ∈M ;

(hL2.) there is a q ∈ A such that the identity

	a,b,c
{
〈〈σ(a), 〈〈 b, c 〉〉 〉〉 + q · 〈〈 a, 〈〈 b, c 〉〉 〉〉

}
= 0,

holds for all a, b, c ∈M .

If we let σ vary in a group G, we get a collection of hom-Lie algebras, called
an equivariant hom-Lie algebra. Notice that an equivariant hom-Lie algebra
includes a Lie algebra (which might certainly be abelian) since this is what we
get when σ is the unit element in G. We can thus view the equivariant structure
as a deformation of a Lie algebra, parametrised by the elements in G.
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Example 2.2. The obvious example is the left A-module A ·∆ with product
defined by theorem 2.1.

Some reasons why σ-derivations are important (and actually prevalent in
abundance) in arithmetic and geometry, can be found in [Lar17] and the ref-
erences therein. In short, σ-derivations and their associated hom-Lie algebras
encodes the Galois structure (or more generally, the automorphism-structure)
of the underlying algebra.

2.2 Infinitesimal hom-Lie algebras

We give a brief illustration of the above constructions that will be of some
importance later.

Let o be a commutative algebra and put o! := o[t]/tn, for some n ≥ 2. Then
o! is an infinitesimal thickening of o. Put ∆ := a(id−σ), where a ∈ o and where
σ(t) = qt, for some q ∈ o×. Then (o! ·∆, 〈〈 , 〉〉 ) is infinitesimal hom-Lie algebra
on o!. The elements ei := ti∆, 0 ≤ i ≤ n − 1, forms a basis for o! · ∆ as an
o!-module.

Now, put ∆ := a(id−σ). Then ∆(ti) = a(1− qi)ti. Using Theorem 2.1 (i) a
small computation gives that

〈〈 ei, ej 〉〉 = a(qi − qj)ei+j .

Observe that when i + j ≥ n, then 〈〈 ei, ej 〉〉 = 0 since in that case ti+j = 0. In
addition, 〈〈 e0, ei 〉〉 = a(1− qi)ei, for all i.

Example 2.3. When n = 3, we get the (a, q)-parametric family of solvable
o-Lie algebras:

〈〈 e0, e1 〉〉 = a(1− q)e1, 〈〈 e0, e2 〉〉 = a(1− q2)e2, 〈〈 e1, e2 〉〉 = 0.

One would be tempted to conjecture that infinitesimal hom-Lie algebras are Lie
algebras for all n. However, this is not true in general.

Associated to (o! ·∆, 〈〈 , 〉〉 ) is an associative “enveloping algebra”, defined by

Iq :=
o{e0, e1, . . . , en−1}(

eiej − qj−iejei − (1− qj−i)ei+j
) .

See [Lar23a] for its construction.

Example 2.4. For the algebra in example 2.3 we find (after change of basis
e0 7→ e0 + 1) we get the algebra

Q3
o,q :=

o{e0, e1, e2}(
e0e1 − qe1e0, e0e2 − q2e2e0, e1e2 − qe2e1

) . (2.1)

The space Mod
(
Q3

o,q

)
is a quantum affine three-space.
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2.3 Kummer–Witt hom-Lie algebras and their “enveloping alge-
bras”

We keep the notation from above and further denote the algebra structure on
A by

yiyj =

n∑
k=0

akijyk, akij ∈ o,

where the yi are the algebra generators of A. Let σ be the o-linear algebra
morphism on A defined by σ(yi) = qiyi, qi ∈ o× and let ∆ = a(id−σ) be the
σ-derivation from the previous section. Put ei := yi ·∆. Then, from Theorem
2.1, the pair

Wσ
A := (A ·∆, 〈〈 , 〉〉 ), 〈〈 ei, ej 〉〉 = a

n∑
k=0

(qi − qj)akijek (2.2)

defines a hom-Lie algebra structure on A · ∆. We call Wσ
A the Witt hom-Lie

algebra over X attached to A and σ.

Remark 2.1. The construction just given is obviously not dependent on the
particular choice σ(yi) = qiyi. Any other automorphism can be used. However,
the result will, of course, be more complicated and harder to write out.

From now on we assume that the n-th roots of unity are included in o. Fix
a primitive such root ζ = ζn and let A be the Kummer extension

A = o[ n
√
x] = o[t]/(tn − x), x ∈ o.

Fix an r ∈ Z and let σ be the automorphism σ(t) = ζrt.
The hom-Lie algebra of σ-twisted derivations on A is called the Kummer–

Witt hom-Lie algebra of level r (see [Lar23a]) and its enveloping algebra is the
Kummer–Witt algebra of level r:

W1/n
x (r) =

o〈e0, e1, . . . , en−1〉(
eiej − ζr(j−i)ejei − (1− ζr(j−i))x� e{i+j (modn)}

) . (2.3)

The notation x� means that x is included when i+ j ≥ n.

Remark 2.2. The same game can clearly be played with Artin–Schreier ex-
tensions. We invite the reader to write out the corresponding relations for
him/herself.

Remark 2.3. The above construction will be used with the following remark.
The element x ∈ o is the A-ramification divisor. This element determines a
canonical subscheme in the ramification locus of a non-commutative space at-
tached to A. The element x is a ramification invariant in two senses: (1) as the
divisor in o over which A is ramified (i.e., p | x⇒ p ramified); and (2) as an ele-
ment giving a subscheme of the ramification locus in a certain non-commutative
space (which we will construct later).
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2.3.1 Fibres of W1/n
x (r)

Let p ∈ Spec(o) be a prime. Observe that the reduction of ζ modulo p (i.e., the
image of ζ in k(p)), ζ̄, is non-zero, since ζ ∈ o×. Then

W1/n
x (r)/p =

k(p)〈e0, e1, . . . , en−1〉(
eiej − ζ̄r(j−i)ejei − (1− ζ̄r(j−i))x� e{i+j (modn)}

) . (2.4)

We record the following for easy reference.

Proposition 2.2. There are the following three possibilities when reducing
modulo a prime p:

(1) ζ̄ = 1, in which case we get

W1/n
x (r)/p =

k(p)〈e0, e1, . . . , en−1〉
(eiej − ejei)

= k(p)[e0, e1, . . . , en−1],

the commutative polynomial algebra;

(2) x̄ = 0, in which case we get

W1/n
x (r)/p =

k(p)〈e0, e1, . . . , en−1〉(
eiej − ζ̄r(j−i)ejei

) ,
a quantum affine space;

(3) and the generic case (2.4) with relations unchanged.

It is important to note that in all three cases, the reduced algebra is a domain.

Proof. Obvious.

Some ring-theoretic properties of W1/n
x (r) are summarised in the following

theorem. Here will use notions that will not be defined in this paper. For more
details see [Lar23a]. It is not essential to understand all words in the theorem
in order to appreciate the rest of the paper.

Theorem 2.3. The algebra W
1/n
x (r) satisfies the following:

(i) it is an Auslander-regular, noetherian PI-domain, finite over its centre;

(ii)
Kdim(W1/n

x (r)) = gl.dim(W1/n
x (r)) = n+ Kdim(o),

where Kdim is the Krull dimension and gl.dim the global dimension;

(iii) it is fibre-wise Cohen–Macaulay with

GKdim
(
W1/n

x (r)/p
)

= tr.deg
(
W1/n

x (r)/p
)

= n,

where GKdim denotes the Gelfand–Kirillov dimension;

(iv) it is fibre-wise a maximal order in its fibre-wise division rings of fractions;

Remark 2.4. The Auslander-regularity is a natural generalisations of regularity
for non-commutative algebras. The same applies to Cohen–Macaulay-ness.
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3 Non-commutative algebraic spaces

In this section we will very briefly introduce the concept of non-commutative
algebraic spaces in the sense of [Lar23b]. We refer to this paper for all details.

Let k be a field, A be a k-algebra and M := {M1,M2, . . . ,Ms} be a finite
family of finite-dimensional (over k) A-modules with structure morphisms ξi.
Then there is a non-commutative ring ÔM and a map ξ : A→ ÔM, encoding the
simultaneous deformations of the modules Mi. In fact, ξ is a versal family of
M.

The ring object ÔM is constructed as follows (details can be found in [ELS17]
or [Lar23b]). Associated to M is a deformation functor having a matric pro-
representing hull (Ĥij). The diagonal consists of quotients of non-commutative
formal power series rings, and the entries off-diagonal are bimodules over the
diagonal. Then OM is defined as the matrix ring

ÔM :=
(

Homk(Mi,Mj)⊗k Ĥij

)
.

The ring ÔM is to be thought of as the completion of the local ring at M in the
moduli space Mod(A) of A-modules up to isomorphism. In all cases that I’m
aware of this has a natural algebraisation OM, which should be viewed as the
local ring itself.

Taking the projective limit over all finite families M, we define a ring object
O on Mod(A).

Definition 3.1. The non-commutative algebraic space of A, is the pair

XA :=
(
Mod(A),O

)
,

where O is the structure object of XA. The tangent space of XA at M is the
matrix TM := (Ext1A(Mi,Mj)ij). We say that XA has property P if Spec(Z(A))
has this property.

Remark 3.1. (i) Note that O is not a sheaf.

(ii) Since O is constructed by deformation theory, the structure object is only
defined fibre-by-fibre over o. The construction can be made in a formal
sense without referring to any special type of base but this is not very
useful in practice. In fact:

(iii) The ring (Ĥij) is constructed in the same way as in the commutative
case (although it is more complicated): successively lifting the tangent
structure (defined over a field) and killing obstructions to further liftings.

The following is definition 2.8 in [Lar23b].

Definition 3.2. Let k be a field and let A and S be k-algebras.

(a) An étale S-rational point on XA is an algebra morphism

ξ : A→ S

such that
A/ ker ξ = A/m1 ×A/m2 × · · · ×A/ms

is a direct product of prime rings. If the A/mi are artinian, being prime
is equivalent to being simple so the mi are maximal ideals. This applies
in particular to the case when S is artinian.
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(b) The underlying étale point of ξ is the set of algebras ξ̄i := A/mi.

(c) If all ξ̄i are simple, the point is closed, otherwise it is non-closed. The
point is open if all the ξ̄i are non-simple.

(d) If s = 1, the map ξ is an S-rational point, which we write in non-boldface:
ξ; the algebra ξ̄ = A/m is then the (unique) underlying point of ξ.

(e) If S = EndL(M) for some field L and M finite-dimensional over L, we say
that ξ is an L-rational point.

(f) ξ is a geometric étale point if it is closed and Z(ξ̄i) = kal for all i.

As usual we denote the S-rational points on X= Mod(A) as

X(S) = Mod(A)(S).

4 The Jackson space

4.1 Polynomial identity algebras
Let R be a commutative ring and let Z〈x〉 = Z〈x1, x2, . . . , xn〉 be the free
Z-algebra on n generators. An R-algebra A is a polynomial identity algebra
(PI-algebra) if there is an n and a P (x) ∈ Z〈x〉 such that P (a1, a2, . . . , an) = 0
for all n-tuples (a1, a2, . . . , an) ∈ An.

Examples abound: all commutative algebras, Azumaya algebras (and so
matrix algebras and central simple algebras) and algebras that are finite modules
over their centres, are arguably the most important ones.

Let A be a PI-algebra with centre Z(A). Then every ideal in A intersects
Z(A) non-trivially. Furthermore, there is a dense open subscheme azu(A) ⊂
Specm(Z(A)) such that for all m ∈ azu(A) the extension of m to A is also a
maximal ideal. The subscheme azu(A) is called the Azumaya locus of A. The
complement,

ram(A) := Specm(Z(A)) \ azu(A),

is the support of a Cartier divisor and is called the ramification locus. We will
be a bit sloppy and refer to azu(A) and ram(A) both as subsets of Z(A) and as
subschemes of Spec(A).

We will routinely identify anA-moduleM with its annihilator a := AnnA(M).
If M is a simple A-module, its annihilator is a primitive ideal. In the case of
PI-algebras, an ideal being primitive is equivalent to it being maximal so we
identify simple modules and maximal ideals via this correspondence.

The following theorem is central in the theory of algebras finite over their
centres.

Theorem 4.1 (Müller’s theorem). Let A be an affine PI-algebra over a field k
and let M and N be simple finite-dimensional A-modules. Then

Ext1A(M,N) 6= ∅ ⇐⇒ Ann(M) ∩ Z(A) = Ann(N) ∩ Z(A).

(The annihilators are left ideals.) The statement can be rephrased as the equiv-
alence

Ext1A(M,N) 6= ∅ ⇐⇒ Ann(M) ∩ Z(A) = Ann(N) ∩ Z(A) ∈ ram(A),
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since Ann(M), Ann(N) are maximal, and so also their intersections with the
centre.

Every simple module of a PI-algebra over a field is finite-dimensional over
the ground field.

We denote by Ψ the map Spec(A) → Spec(Z(A)) defined by ideal contrac-
tion. When A is finite over Z(A) this is a finite morphism in the sense that
#Ψ−1(p) <∞ for all p ∈ Spec(Z(A)).

4.2 The Jackson algebra

Now, to summarise the constructions made so far bullet-wise:

• We have taken a Kummer extension A = o[ n
√
x], x ∈ o, of degree n;

• On this extension we have chosen a ζrn-derivation;

• From ζrn-derivation we constructed the associated hom-Lie algebra (which
is an infinitesimal structure for twisted derivations, analogously to Lie
algebras for ordinary derivations) and its “enveloping algebra”, W1/n

x (r).

Hence, W1/n
x (r) captures the ζrn-infinitesimal structure of o[ n

√
x].

Clearly, W1/n
x (r) is quite complicated in general and so is not so easy to work

with. Fortunately there is a subalgebra inside W
1/n
x (r) that has some remark-

able ring-theoretic, geometric and arithmetic properties, some of whichW
1/n
x (r)

itself does not enjoy. This subalgebra is isomorphic to a “ζrn-deformation” of the
enveloping algebra of the Lie algebra sl2. We will now describe this algebra.

Put, in order to simplify notation a bit, ω := (1 − ζ2r). Recall that ζ = ζn
is assumed to be primitive. Since ζ−(n−1) = ζ and ζ−(n−2) = ζ2, the algebra

S := o〈e0, e1, en−1〉
/
I,

with

I :=
(
e0e1 − ζre1e0 − (1− ζr)e1, en−1e0 − ζre0en−1 − (1− ζr)en−1,

en−1e1 − ζ2re1en−1 − xωe0
)

is easily seen to be a subalgebra of W1/n
x (r). Now, define the algebra

Jx(r) := o〈e0, e1, e2〉/J, r ∈ Z, (4.1)

where J is the ideal

J :=
(
e0e1 − ζre1e0, e2e0 − ζre0e2, e2e1 − ζ2re1e2 − xe0 − xω

)
.

Proposition 4.2. The algebras S and Jx(r) are isomorphic over o
[
ω−1

]
, and

in particular fibre-wise. Furthermore, Jx(r) (and hence also S) is an iterated
Ore extension (skew polynomial ring). The generator en−1 in S becomes the
generator e2 in Jx(r).
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If n is composite with at least two different prime factors, such that ζ2r
is primitive, then ω is invertible in o. Hence, in that case, S and Jx(r) are
isomorphic already over o.

Definition 4.1. The algebra Jx(r) is called the Jackson algebra of level r. Let
w be the Teichmüller character defined by σ(ζ) = ζw(σ). The family of algebras

Jtot
x :=

{
Jx(w(σ))

∣∣ σ ∈ Z/n
}
,

is called the total Jackson algebra. This is a Z/n-torsor.

We have already indicated the following remark, but it is important enough
to repeat.

Remark 4.1. The algebras Jx, Jtot
x and W

1/n
x (r), encode the Galois structure

of o[ n
√
x] through its ζr-derivations, even though we have reduced the number

of generators from n to 3.

Remark 4.2. (i) The name “Jackson algebra” is in honour of F.H. Jackson
(1870–1960) and his work on q-derivations. Indeed, Jx(r) is isomorphic
to the (enveloping algebra of the) “Jackson-sl2”, a q-deformed version of
the three-dimensional Lie algebra sl2, deformed using q-derivations. See
[LS07] for the details.

(ii) When ζ2r = 1, the algebra Jx(r) is either isomorphic to the commuta-
tive polynomial algebra o[t1, t2, t3] (when ζ = 1) or to the o-algebra on
generators e0, e1, e2 and with relations

e0e1 + e1e0 = 0, e2e0 + e0e2 = 0, e2e1 − e1e2 = xe0.

4.3 The centre Z(Jx(r))

To simplify notation we will from now on often omit the dependence on r in the
notation Jx(r) and simply write Jx.

As before, we put
A/p := A⊗o k(p)

for any o-algebra A.
See [Lar23a] for the proofs of the following theorem and its corollary.

Theorem 4.3. Assume that ζr is a primitive n-th root of unity. Then the
following holds.

(i) For x = 0:

Z(J0)/p = k(p)
[
ea0e

b
1e
c
2

∣∣∣ r(a+ 2b) and r(b− c) ≡ 0 modn
]
.

Observe that k(p)[el0, e
l
1, e

l
2] ⊆ Z(J0)/p.

(ii) For x 6= 0:
k(p)[el0, e

l
1, e

l
2] ⊆ Z(Jx)/p

where l ∈ N is such that lr is the least multiple of n.
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In both cases we have

(iii) Jx is an Auslander-regular, homologically homogeneous1, noetherian, fibre-
wise Cohen–Macaulay domain, finite as a module over its centre and hence
a polynomial identity ring (PI) of pideg(Jx) = n;

(iv) Jx is a maximal order in its division ring of fractions;

(v) Spec(Z(Jx)) is a normal, irreducible scheme of dimension three.

(vi) Spec(Z(J0)) is in addition fibre-wise Cohen–Macaulay in the commutative
sense, i.e.,

Spec
(
Z(Jx)/p

)
= Spec

(
Z(J0)⊗o k(p)

)
is a Cohen–Macaulay scheme for all p ∈ Spec(o).

In fact, in [Lar23a], the centre in case (ii) is computed explicitly, but we
won’t be needing this in this paper.

We immediately get the following corollary.

Corollary 4.4. With the notation as above:

(i) The algebra (Jx)/p is finite as a module over k(p)
[
el0, e

l
1, e

l
2

]
.

(ii) Hence, the ring extension k(p)
[
el0, e

l
1, e

l
2

]
⊆ Z(Jx) is finite, and conse-

quently the morphism

ψ : Spec
(
Z(Jx)

)
→ A3

(l) := Spec
(
k(p)

[
el0, e

l
1, e

l
2

])
is finite as a morphism of schemes. We put l in the notation to indicate
that we have a weighted version of the affine three-space.

(iii) In the other direction, any maximal m in Z(Jx) splits into i maximal ideals
in Jx, where 1 ≤ i ≤ m, and where m is the rank of Jx as a module over
Z(Jx). In other words,

Ψ−1(m) =
{
m1,m2, . . . ,mi

∣∣∣ for some 1 ≤ i ≤ m
}
.

Recall that Ψ is the contraction map on ideals.

(iv) Also, any maximal m in k(p)
[
el0, e

l
1, e

l
2

]
splits into j maximal ideals in

Jx(r), where 1 ≤ j ≤ n, and where n is the rank of Jx as a module over
k(p)

[
el0, e

l
1, e

l
2

]
. In other words,(

ψ ◦Ψ
)−1

(m) =
{
m1,m2, . . . ,mj

∣∣∣ for some 1 ≤ j ≤ n
}
.

I conjectured in [Lar23a] that Spec(Z(J0)) is singular for all n, and that it
might also be rational. In fact, I could prove the following theorem.

Theorem 4.5. Let K be a field of characteristic zero and let Ja
x be the base

change (Jx)/K ⊗K Ka of (Jx)/K to the algebraic closure Kal. Then

(i) Spec
(
Z(Ja

x )
)
has rational singularities;

(ii) both Spec
(
Z(Ja

x )
)
and Spec

(
Z((Jx)/K)

)
are Cohen–Macaulay.

The question I couldn’t, and still can’t, answer in [Lar23a] is whether this
also implies that Spec

(
Z((Jx)/K)

)
itself has rational singularities.

1This is another regularity property, which I won’t define, of non-commutative rings, gen-
eralising the commutative counterpart.
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4.4 The non-commutative space XJx

4.4.1 Properties of XJx

Since Jx is finite as a module over its centre, we can directly infer the following
result from the previous discussions.

Corollary 4.6. The space XJx satisfies the following properties.

(i) It is Auslander-regular, homologically homogeneous, noetherian and irre-
ducible.

(ii) It is fibre-wise Cohen–Macaulay of dimension 3.

(iii) It is fibre-wise rational in the sense that it is a maximal order in its division
ring of fractions.

(iv) It has fibre-wise (at worst) geometric rational singularities in that its base
change to the algebraic closure has rational singularities.

(v) Contraction of ideals defines a finite morphism XJx → Spec(Z(Jx)) which
is one-to-one over azu(A), and j-to-one, for some 1 ≤ j ≤ n, over ram(A).
We view XJx as fibred over Spec(Z(A)).

Note that XJx satisfies regularity properties generalising the commutative
regularity condition even though the centre might have singularities.

We put
Xtot

Jx
:=

⊔
σ∈Z/n

XJx(w(σ)),

the total Jackson space. This is a Z/n-torsor via the Z/n-action on Jtot
x . We

can partition Xtot
Jx

with respect to subgroups of Z/n into sets (not disjoint of
course).

4.4.2 The locus of one-dimensional points and its infinitesimal structure

For illustration we will now study the rational one-dimensional points. Thus,
for this section we let k be any field with a primitive n-th root of unity ζ :=
ζn. Furthermore, we identify 1-dimensional points, 1-dimensional modules and
their annihilator ideals. These points are maximal since 1-dimensional (over k)
modules are simple.

Note first that any 1-dimensional Jx-module must lie on the ramification
locus. Indeed, any module in azu(A) corresponds to a central simple algebra of
dimension n2.

Assume ζ2r 6= 1. Then the relations reduce to

(1− ζr)e0e1 = 0

(1− ζr)e0e2 = 0

(1− ζ2r)e1e2 = xe0 + x(1− ζ2r).

This implies that x(e0 + (1− ζ2r)) = 0 so, if x 6= 0, we have that (ζ2r − 1, 0, 0)
is a one-dimensional module. In addition, the conic (hyperbola) Cx given by
e1e2 = x in the plane e0 = 0 consists entirely of commutative points (i.e., one-
dimensional modules). When x = 0, we find that the one-dimensional modules
lie on the union of the coordinate planes.
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Remark 4.3. When ζ2r = 1 we may assume that ζr = −1. The relations

e0e1 + e1e0 = 0, e2e0 + e0e2 = 0, e2e1 − e1e2 = xe0

imply that
2e0e1 = 0, 2e0e2 = 0, xe0 = 0.

Consider first when char(k) 6= 2. When x 6= 0 we get that the plane {e0 = 0}
consists entirely of one-dimensional points. On the other hand, when x = 0,
we get the union of the coordinate planes. Now, if char(k) = 2, we get, when
x 6= 0, the plane {e0 = 0} and, if x = 0, the whole A3.

We begin by working in e0 = 0. Let k ⊆ k′ be a field extension and consider
the k′-rational point

ξ(a,b) := k′ · f , with e1 · f = af , e2 · f = bf , a, b ∈ k′,

and similarly ξ(u,v). Then we have the following results.

Proposition 4.7. Put ξ :=
{
ξ(a,b), ξ(u,v)

}
be an étale k′-rational point on XJx .

Recall that Tξ denotes the tangent space at ξ.

(i) Suppose x 6= 0 and ζ2r 6= 1. Then,

Tξ = Ext1Jx
(
ξ(a,b), ξ(u,v)

)
=


k, when a = ζru, and v = ζrb

k′, when a = ζ2ru, and v = ζ2rb

k′, when a = u, and b = v.

In all other cases Ext1Jx
(
ξ(a,b), ξ(u,v)

)
= 0.

(ii) Suppose x = 0 and ζ2r 6= 1. Then

Tξ = Ext1Jx
(
ξ(a,b), ξ(u,v)

)
=


k′, when a = u, and b = v

k′, when a = ζ2ru, and v = ζ2rb

(k′)2, if when a = b = u = v = 0

0, otherwise.

(iii) Suppose x 6= 0 and ζ2r = 1. Then

Tξ = Ext1Jx
(
ξ(a,b), ξ(u,v)

)
=

{
k′, when a = u, and b = v

0, otherwise.

(iv) Suppose x = 0 and ζ2r = 1. Then

Tξ = Ext1Jx
(
ξ(a,b), ξ(u,v)

)
=

{
k′, when a = ±u, b = ±v, char(k) 6= 2

(k′)3 when a = u, b = v, char(k) = 2.

Proof. The proof (which is rather simple) can be found, together with other
information, in [Lar23a].
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From the above, one can construct the ring object O over families of 1-
dimensional modules. Even though the result will probably be hard to interpret
I feel that it can be helpful to see what O actually look like in practice.

We only write it out for families of two modules.

Proposition 4.8. Let the notation be as above. Modulo possible obstructions
the versal bases for the deformations of ξ are the following.

(i) Suppose x 6= 0 and ζ2r 6= 1. Then, for j = 1, 2,

Ôξ =

(
Endk′(ξ(ζjru,b))⊗ k′[[t11]] Homk′(ξ(ζjru,b), ξ(u,ζjrb))⊗ 〈t12〉

Homk′(ξ(u,ζjrb), ξ(ζjru,b))⊗ 〈t21〉 Endk′(ξ(ζjru,b))⊗ k′[[t22]]

)
,

with algebraisation,

Oξ =

(
Endk′(ξ(ζjru,b))⊗ k′[t11] Homk′(ξ(ζjru,b), ξ(u,ζjrb))⊗ 〈t12〉

Homk′(ξ(u,ζjrb), ξ(ζjru,b))⊗ 〈t21〉 Endk′(ξ(ζjru,b))⊗ k′[t22]

)
,

in all non-zero cases. In the other cases

Ôξ = Oξ = Homk′(ξ(a,b), ξ(u,v)).

(ii) Suppose x = 0 and ζ2r 6= 1. Then, the first two rows combine to the case
in (i), while the second is

Ôξ(0,0) = Endk′(ξ(0,0))⊗ k′〈〈t1, t2〉〉, Oξ(0,0) = Endk′(ξ(0,0))⊗ k′〈t1, t2〉.

(iii) Suppose x 6= 0 and ζ2r = 1. Then

Ôξ(a,b) = Endk′(ξ(a,b))⊗ k′[[t]], Oξ(a,b) = Endk′(ξ(a,b))⊗ k′[t]

and Ôξ = Oξ = Homk′(ξ(a,b), ξ(u,v)) in all other cases.

(iv) Suppose x = 0 and ζ2r = 1 and let ξ be the étale rational point ξ ={
ξ(a,b), ξ(−a,−b)

}
. Then, when char(k) 6= 2,

Ôξ =

(
Endk′(ξ(a,b))⊗ k′[[t11]] Homk′(ξ(a,b), ξ(−a,−b))⊗ 〈t12〉

Homk′(ξ(−a,−b), ξ(a,b))⊗ 〈t21〉 Endk′(ξ(−a,−b))⊗ k′[[t22]]

)
and when char(k) = 2,

Ôξ(a,b) = Endk′(ξ(a,b))⊗ k′〈〈t1, t2, t3〉〉,

both with obvious algebraisations.

Be sure to notice the situation when char(k) = 2.

5 Ramification

We will separate the discussion into two cases: (1) the geometric case, and (2)
the arithmetic case. The geometric case is essentially trivial.
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5.1 The geometric case
This is the case when the base o is an algebra over a field k, such that ζn ∈ k.
The discussion below applies to both Jx and W

1/n
x , but we will only write it

out for Jx.
Assume o = k[b1, b2, . . . , bm]/I. Hence

A = o[ n
√
x] = o[t]/(tn − x) = k[b1, b2, . . . bm, t]/(I, t

n − x), x ∈ o.

The zero-locus of x is the branch locus, branch(A/o), of A/o. Over p /∈
branch(A/o) the cover Spec(A) → Spec(o) is étale (and in particular unrami-
fied) and so the fibre over p is

A⊗o k(p) =
∏̀
i=1

ki, 1 ≤ ` ≤ deg(A/o),

and where each ki a finite field extension of k(p). The group Z/n acts transitively
on the points of the fibre. Therefore we can construct the algebras Jx (and
W

1/n
x ) fibre-wise, but that is not what we are going to do.
Since n is invertible on the base the only interesting case of ramification is

when p | x, i.e., when p ∈ branch(A/o). Therefore,

Proposition 5.1. Let o and A be as above. Then

(i) if p /∈ branch(A/o), the reduction of Jx modulo p gives a generic (i.e.,
x 6= 0) Jx,/p;

(ii) if p ∈ branch(A/o), the reduction of Jx modulo p gives a quantum affine
algebra J0,/p.

Hence, the ramification properties of A/o determines the structure of the alge-
bras Jx fibre-wise. The converse is also true in the geometric case: the structure
of Jx can be used to read off the ramification properties of A/o fibre-wise.

5.2 The arithmetic case
In a sense the geometric case is simple enough, it only comes down to the fact
that Kummer extensions have simple properties when n is invertible on all fibres.

The arithmetic case is not so straightforward since the fibres have charac-
teristic that can divide n. Let oK be the ring of integers in a number field K
such that ζn ∈ oK .

Consequently, A = oK [ n
√
x], x ∈ oK . The branch locus is still the zero-locus

of x, but now there are more possible types of ramification. In this paper we
will only consider ramification at closed points, so ramification coming from
inseparability (or imperfectness) of the residue class rings, will not be an issue.

Assume now that p | n, say n = pkm. Then, ζn = 1 ⇐⇒ (ζmn − 1)p
k

= 0,
implying that ζm = 1 for m < n. Hence there are no, non-trivial, primitive n-th
roots of unity in this case.

Proposition 5.2. Let A = oK [ n
√
x], with x ∈ oK , and let p ∈ Spec(oK).

(i) If p - n and p - x, the extension is unramified and XJx ⊗ k(p) is generic;
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(ii) if p - n and p | x, the extension is tamely ramified (total if p2 - x) and
XJ0 ⊗ k(p) is a quantum affine space;

(iii) if p | n and p - x, the extension is ramified and

XJx ⊗ k(p) = XA1
k(p)

,

where

A1
k(p) :=

k(p)[u]〈t, ∂〉
(∂t− t∂ − u)

,

is the first Weyl algebra over the affine line, which in characteristic p, is
Azumaya, and, finally

(iv) if p | n and p | x, the extension is ramified and XJx ⊗ k(p) is the affine
three-space.

Observe that we cannot distinguish the ramification types (tame/wild) in
(iii) and (iv). On the other hand, the partition of Xtot

Jx
with respect to subgroups

of Z/n mentioned before can clearly be used with the ramification groups. How-
ever, the result will obviously not be visible in the structure of the spaces XJx

themselves. Nevertheless, maybe studying the relation (via non-commutative
“morphisms” between the elements in the partitions) might be used in some
way.

Proof. If p - n and p - x the extension is unramified and Jx/p is a generic Jackson
algebra since all n-the roots of unity are in k

(
p). On the other hand, if p - n

and p | x, the ramification is tame and we end up in the affine quantum algebra
case J0/p. If, in addition p2 - x, the ramification is total. If p | n, then every ζn
reduces to 1 modulo p so get two the cases in (iii) and (iv).

6 Torsion points and elliptic Jackson spaces

We will now construct the algebra Jx from the torsion field of elliptic curves with
a K-rational torsion point and show that Jx encodes the reduction properties
of the elliptic curve.

Let K be a local field and adjoin ζp, a primitive p-th root of unity for p a
prime and put L := K(ζp). Let E be an elliptic curve over K with a (non-
trivial) K-rational p-torsion point. Then K(E[p])/L is a Kummer extension of
degree p or 1, with K(E[p]) the field generated by the p-torsion points of E.
Hence, K(E[p]) = L[ p

√
x] = L[t]/(tp − x), for some x ∈ L, or K(E[p]) = L. See

[Yas13], for instance. We can, and will, assume that x ∈ oL. In order to achieve
this we might need to multiply x with a unit (clearing denominators).

The criterion of Néron–Ogg–Shafarevich (NOS) gives that if E has good
reduction at ` 6= p, ` ∈ Spec(Z), then K(E[p])/K is unramified at `. We will
need the following generalisation due to M. Kida. We will denote the reduction
types of elliptic curves with the corresponding Kodaira symbols.

Theorem 6.1. Let E be an elliptic curve over a local field K, finite over Q`.
Put n := −v(j(E)), where v is the valuation of K.
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(a) If p ≥ 3, K(E[p])/K is unramified at the place of K over `, if and only if

Type(E) =

{
I0, or
In, if p | n.

In other words, K(E[p])/K is unramified if and only if E has semistable
reduction (over K).

(b) If p = 2, K(E[2])/K is unramified if and only if

Type(E) =


I0, or
In, if n even, or
I∗0 or I∗n, with n odd.

Proof. See [Kid03, Theorem 1.1]

The following lemma holds also when K i a number field.

Lemma 6.2. A prime p in K is ramified in L = K(ζp) if and only if p | p and
(p− 1) - e(p), where e(p) is the absolute ramification index of p. In particular,
if e(p) = 1 and p ≥ 3, p is ramified if and only if p | p. If p = 2, p is ramified if
and only if p | p (regardless of e(p)).

Proof. See [CDyDO03, Theorem 1.1(1)].

Put F := K(E[p]) and consider the following tower of extensions:

F qF

L

deg = p or 1

q

K

deg= p−1

qK

Q `

Throughout, we put k := k(q), the residue class field of q.
Observe that [F : L] = p or [F : L] = 1, [L : K] = p − 1, so either

[F : K] = p(p− 1) or [F : K] = p− 1.

Remark 6.1. It seems that the case [F : L] = 1 is rare. Recall that the roots
of the modular equation Φp(X, j(E)) = 0 are the j-values of all elliptic curves
isogeneous to E with cyclic kernel of degree p. From this follows that any cyclic
isogeny is defined over a subfield of K(E[p]) and so

L ⊆ L ·K(Φp(X, j(E))) ⊆ K(E[p]).

Therefore a necessary condition for F = K(E[p]) to be equal to L is that the
modular polynomial Φp(X, j(E)) (of degree p) splits completely over L, i.e., that
L is a splitting field for Φp(X, j(E)). Hence it is necessary that E is represented
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by an L-rational point on the modular curve X0(p)/Q. Further evidence of this
scarcity can be found in [GJLR16], where it is proved that if K = Q, the only
possible values for n where Q(E[n]) = Q(ζn) can happen are 2, 3, 4 and 5.

Remark 6.2. Assuming the degree of F/L is bigger than one, it is fairly simple
to find a generator x such that F = L[ p

√
x]. See the (sketch of) the proof of

[Yas13, Proposition 2.5].

I want to point out that many of the statements made below are well-known.
However, I made the decision to prove most of them anyway, probably with more
difficult proofs than needed. The main reasons are that I had problem finding
suitable references and also that I found some joy in coming up with the proofs,
in addition to fresh insights.

We need to separate the following into two cases: ` 6= p, and ` = p.

6.1 Special fibres of elliptic Jackson spaces; the case ` 6= p

By hypotheses here then, q - p. Then qK is unramified in L by lemma 6.2.
Assume [F : L] 6= 1.

Lemma 6.3. Let q be a prime in L over qK . Then q is unramified in F/L if
and only if vq(x) ≡ 0 (mod p). In particular, if q - x, q is unramified.

Proof. See [Cas67, Exercise 2.12].

Remark 6.3. Notice that q can be unramified even if q | x. Namely if

x = aqp
t

, t ≥ 1 or, equivalently, vq(x) 6≡ 0 (mod p),

for some ideal a in oL, relatively prime to q. This is seen by a change of divisor
x to an isomorphic, unramified extension (see [Cas67, Exercise 2.12]). In other
words, we can change x to an element y ∈ L such that

F = L[ p
√
x] ' L[ p

√
y], with q - y.

Now since qK is unramified in L, q is unramified in F if and only if vq(x) ≡
0 (mod p). Also, since ` 6= p, ζp 6≡ 1 (mod `). Note that

e(qF |qK) = e(qF |q)e(q|qK). (6.1)

Theorem 6.4. Suppose ` 6= p. Then E has semistable reduction at qK | `
if and only if, possibly after a change of generator x, Jx ⊗L k is generic, or,
equivalently, that XJx ⊗L k is a generic Jackson space.

The claim is independent of r since ζr is primitive for all 1 ≤ r ≤ p − 1.
However, the resulting spaces are non-isomorphic in general.

Proof. Assume first that E is semistable. This is, by Kida’s theorem 6.1,
equivalent to qK unramified in F/K. Since the left-hand-side of (6.1) is then
1, we see that q is unramified in F/L. By lemma 6.3 this is equivalent to
vq(x) ≡ 0 (mod p). Therefore, either q - x and the reduction becomes generic;
or x = aqs, with p | s, in which case remark 6.3 implies that we can change
generator x → y so that F = L[ p

√
y] and q - y, and therefore the reduction is

still generic (after change to y).
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Conversely, suppose Jx⊗L k is generic. Then x 6≡ 0 (mod q). Hence vq(x) ≡
0 (mod p), implying that q is unramified in F by lemma 6.3. From (6.1) we thus
find that e(qF |qK) = e(q|qK). Since qK - p, lemma 6.2 implies that e(q|qK) = 1
and so qK is unramified in F . Kida’s theorem then gives that E is semistable.
The proof is complete.

Theorem 6.5. Suppose ` 6= p. If E has non-semistable reduction at qK | `, then
XJx ⊗L k is a (possible trivial, depending on the roots of unity in k) quantum
affine space.

Suppose, conversely, that XJx ⊗L k is a quantum affine space, implying that
x = aqs.

(i) If p - s, then E has non-semistable reduction;

(ii) if p | s, then E has semistable reduction.

Proof. Since qK - p, lemma 6.2 implies that qK is unramified in L. From (6.1)
we find that e(qF |qK) = e(qF |qK) and so if q ramifies in F , q must also ramify
in F . Therefore, lemma 6.3 implies that vq(x) 6≡ 0 (mod p). Hence x = 0 in
Jx ⊗L k.

Conversely, assume x = aqs. If p - s then lemma 6.3 gives that q is ramified
in F , implying that qK is also ramified in F . Kida’s theorem then implies that
E has non-semistable reduction. On the other hand, if p | s, then q is unramified
in F (after a change of generator). Equation (6.1) gives e(qF |qK) = e(q|qK),
implying that q is unramified in F , since e(q|qK) = 1 when qK - p by lemma
6.2. Therefore, Kida’s theorem implies that E has semistable reduction.

Clearly, we didn’t need to prove theorem 6.5 since it is a consequence of
theorem 6.4. However, I feel that the above proof gives me some interesting
insights.

Remark 6.4. It is interesting to note that, by [Sil94, Theorem IV.10.3(b)], E
has good reduction over K(E[`]).

6.2 Special fibres of elliptic Jackson spaces; the case ` = p

Since q | p, we have that ζp ≡ 1 (mod p) unless (p− 1) | e(q). We assume from
now on that e(q) = 1, and so we can observe that ζ̄p = 1 ∈ k. The case e(q) ≥ 2
is probably considerably harder. As always, the case p = 2, presents additional
difficulties so we assume for simplicity that p > 2.

Theorem 6.6. Let E/K be an elliptic curve with a K-rational p-torsion point.
Assume that [F : L] ≥ 2 (i.e., that not all p-torsion points are K-rational) and
that e(q) = 1.

(i) Let E/K be an elliptic curve with a K-rational p-torsion point and let qK
be a prime of K over p. Then E cannot have good supersingular reduction
at qK ; in addition,

(ii) the case of non-split multiplicative reduction cannot happen.

(iii) If E/K has good ordinary, split multiplicative, or additive, reduction at
qK , then

XJx ⊗L k =

{
XA1

k
, if q - x

A3
k, if q | x.
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Recall that A1
k denotes the first Weyl algebra over the affine k-line.

Parts of the above theorem are almost certainly known but I haven’t found
precise references so I supply complete proofs of all statements. There are almost
certainly easier and shorter arguments than presented.

Proof. Assume that E/K has good supersingular reduction at qK | p. Since E
has a K-rational p-torsion point, we know that F/L is either trivial or cyclic of
degree p. In the first case there is nothing to prove, so assume that the degree
of the extension is p. This means that [F : K] = p(p − 1). By the assumption
that E has good supersingular reduction, [Ser72, Proposition 12, 1.11] implies
that the inertia group of Gal(F/K) has degree p2 − 1, which is then clearly not
possible for an extension of degree p(p− 1).

Suppose that E/K has multiplicative reduction over p. Let Eq be the as-
sociated Tate curve, with vq(q) < 0 (see [Sil94, Theorem V.5.3] for details).
Then E has a K-rational p-torsion point if and only if E has split multiplicative
reduction and the Tate period q is a p-th power. Now, from [Sil94, Theorem
V.5.3(b)]) we have that E is split multiplicative if and only if E ' Eq over
K. Hence, in particular E[p] ' Eq[p] (over K). On the other hand, if E has
non-split multiplicative reduction there are no K-rational p-torsion points. The
reason for this is that we need to base change E to an unramified quadratic
extension of K to get an isomorphism between E and Eq. The details can be
found in [Sil94, Section V.5].

Since q | [F : L], proposition 5.2 (iii) shows that, F/L is ramified and
XJx ⊗L k is either XA1

k(p)
or A3

k, depending on whether q | x or not.

The above theorem suggests that Jx might not be the best algebra to use to
study the case ` = p. Therefore we will turn to the infinitesimal algebras from
section ??. We remark that the infinitesimal algebras Iq enjoy the same ring-
theoretic and homological properties as Jx as given in theorem 4.3 and corollary
4.4.

Assume that K is a local field, unramified over Qp (so e = 1). We can (and
will) choose p as the uniformiser of oK . Put k := oK/p. BecauseK is unramified
over Qp we can write

K = Qp(ζm), m = pn − 1, n = [K : Qp]

where ζm is a primitive m-th root of unity. Hence k = Fpn and ζ̄m ∈ k.
Let E/K be an elliptic curve over K and E := E/oK its minimal regular

model. The extension F/L = K(E[p])/K(ζp) is a separable extension with ring
of integers oL[ p

√
x] = oK [ζp][ p

√
x]. Therefore, we can find a β ∈ F such that

F/L = K(ζp)(β)/K(ζp) and oF := oL[β].
We can choose x as x =

∑p−1
i=0 ζ

i
pτ
i(β), where we have chosen a generator τ

for Gal(F/L). The extension K(E[p])/K(ζp) = L(β)/L is totally (and wildly)
ramified since reducing modulo the maximal ideal m = (p) ⊂ oK we have

oL[ p
√
x] = oK [ζp][

p
√
x] � k[T ]/(T − x̄)p.

In addition, x̄ is identically zero since

x̄ =

p−1∑
i=0

ζ̄ipτ̄
i(β̄) = pβ̄ = 0.
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Recall that, since the extension is ramified, τ̄ = id. Since K(E[p])/K(ζp) is a
totally ramified Kummer extension it is, a priori, clear that x must be a unit
times a uniformiser (which in this case is p).

The choice of P ∈ E[p](K) allows us to choose a Q ∈ E[p] such that {P, Q} is a
Z-basis for E[p]. The lifting {P̂, Q̂} becomes a Z-basis on E, but its specialisation
to the closed fibre need not be a basis. Since P ∈ E[p](K) the specialisation P̄

to the closed fibre can be viewed as an element in the special fibre Ē(k).
Recall that o!L = oL[T ]/(T p) and consider the polynomial ring o!L[y] =

oL[T, y]/(T p). There are two natural morphisms o!L[y] → L![y] and o!L[y] →
k![y]. On o!L[y] we introduce the oL[y]-linear automorphism σ(T ) := yT . This
naturally extends to the generic fibre L![y] and the special fibre k![y].

Evaluation y → λ ∈ Kal defines an o!L[λ]-rational point on Spec(o!L[y]). We
now construct the algebra

Iλ := E
(
oL[λ]! · (id−σ)

)
=

oL[λ]〈e0, e1, . . . , ep−1〉(
eiej − λj−iejei − (1− λj−i)ei+j

) ,
over oL[λ]. Remember that we take i+ j modulo p.

There is a natural subalgebra of Iλ, namely,

IIλ := oL[λ]〈e0, e1, ep−1〉

/ e0e1 − λe1e0 − (1− λ)e1
e0ep−1 − λp−1ep−1e0 − (1− λp−1)ep−1

e1ep−1 − λp−2ep−1e1

 .

For simplicity, we put e2 := ep−1. If we want to make the prime explicit in the
notation we write II

(p)
λ .

Making the substitution e0 7→ e0 + 1 and some re-arranging yields the iso-
morphic algebra (which we also denote IIλ):

IIλ = oL[λ]〈e0, e1, e2〉

/ e0e1 − λe1e0
e2e0 − λ1−pe0e2
e2e1 − λ2−pe1e2

 .

Remark 6.5. The algebra IIλ can be viewed as the glueing of three (in general)
distinct quantum planes.

6.2.1 The special fibre of II

We will now reduce modulo the maximal ideal (p) and the generic point. The
following diagram summarises the situation:

Ē E
redoo // E/K

IIλ ⊗oK k IIλ
redoo // IIλ ⊗oK K.

Put IIλ = IIλ ⊗oK k, the special fibre of IIλ. We call IIλ ⊗oK K, the generic
fibre (of course).

We will continue working with the minimal regular model E of E/K . Recall
that E(K) = E(oK), and thus E(K)[p] = E(oK)[p]. The set of non-singular
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k-points on Ē is isomorphic to the identity component of the special fibre Ē0(k)
(see [Sil94, Corollary IV.9.2(c)]).

Fix a, b ∈ Z and let

θ(a,b);S := S
(
[a]P + [b]Q

)
∈ F = K(E[p]),

where S is a function in the coordinates of [a]P+[b]Q. Normally we will consider
a, b and S as fixed and so we simply write θ for θ(a,b);S unless confusion can
arise. We write θ =

∑p−1
i=0 θiβ

i, with θi ∈ L.
From now on we let d be the number of irreducible components of Ē(k),

counted without multiplicities, and f the conductor of E. Put w := f + d and
evaluate λ at ζw, where ζw ∈ µw is primitive. We choose ζ = ζw such that
ζ̄ is also primitive. In addition, we set IIw := IIζ . Ogg’s formula (see [Sil94,
IV.11.1]) shows that w = vp(∆

min
E ) + 1, where ∆min

E is the minimal discriminant
of E/K .

Remark 6.6. Note that we make three successive evaluations: y → λ → ζw.
We could certainly do the evaluation y → ζw directly, but I feel that this misses
the point in the sense that the value ζw for λ is a specific choice.

When w = f + d is irrelevant we sometimes write ζ instead of ζw. Put
kw := k(ζw) and let z := (z0, z1, . . . , zp−1)T be a vector in oL[ζ]p. Recall that
θ := θ(a,b);S is fixed. Define the étale L-rational point Nθ,z to be the family of
one-dimensional IIw-modules Nj := oL[ζ] · y defined by

e0 · y := ∆Ey, e1 · y := zjy, e2 · y := θjy,

where ∆E is the discriminant of E and θj is the j-th coefficient of θ. To be
explicit we will sometimes write Nj as a triplet (∆E , zj , θj) and the étale point
Nθ,z = (∆E , z,θ).

In order for Nj to be an IIw-module it is necessary and sufficient that

(1− ζ)∆Ezj = 0, (1− ζ1−p)∆Eθj = 0, and (1− ζ2−p)zjθj = 0.

Clearly, the special fibre, which we denote IIw, is

(1− ζ̄)∆̄E z̄j = 0, (1− ζ̄1−p)∆̄E θ̄j = 0, and (1− ζ̄2−p)z̄j θ̄j = 0.

If zj 6= 0 for all j the étale rational point Nθ,z is clearly empty since the
element θ is fixed.

A computation shows the following theorem.

Theorem 6.7. Let N̄1 and N̄2 be (∆̄E , z̄1, θ̄1) and (∆̄E , z̄2, θ̄2), respectively.
Then

TN = Ext1
IIζ

(N̄1, N̄2) =


kw, if ∆̄E = 0 and z̄1 = z̄2 = 0 and θ̄2 = ζ̄2−pθ̄1

kw, if ∆̄E = 0 and θ̄1 = θ̄2 = 0 and z̄1 = ζ̄2−pz̄2

0, otherwise.

From this follows that

ÔN =

(
Endkw(N̄1)⊗ kw[[t11]] Homkw(N̄1, N̄2)⊗ 〈t12〉
Homkw(N̄2, N̄1)⊗ 〈t21〉 Endkw(N̄2)⊗ kw[[t22]]

)
where N = {N̄1, N̄2}.
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Remark 6.7. The theorem applies also to the case 1 − ζ̄2−p = 0. Unless
z1 = z2 = 0 or θ1 = θ2 = 0, we always end up in the third case.

Assume z̄j = 0 and let N̄j be (0, 0, θ̄j). Then the mirror of N̄j is the
module N̄⊥j such that N̄⊥j = (0, 0, ζ̄2−pθ̄j). Theorem 6.7 the shows that there
is a tangent between N̄j and N̄⊥j , visually N̄j → N̄⊥j . Note that (N̄⊥j )⊥ is
not necessarily N̄j . However, identifying the modules N̄j = (0, 0, ζ̄2−pθ̄j) and
N̄′j = (0, 0, ζ̄p−2θ̄j), sets up a symmetry and so with this we can claim the
implication N̄j → N̄⊥j =⇒ N̄⊥j → N̄j .

The mirror of the étale kw-rational point N̄θ,z is naturally the family of
modules

N̄⊥θ,z := ζ̄2−pN̄θ,z.

We say that N⊥θ,z is a mirror of Nθ,z if N̄⊥θ,z is the mirror of N̄θ,z. Any mirror
of Nθ,z defines an element in F , namely θ⊥ := ζ2−pθ, hence also in Iζ , and by
restriction, in IIw.

6.2.2 p 6= 3

For p ≥ 5 we have

f =


0, if E has good reduction,
1, if E has multiplicative reduction, and
2, if E has additive reduction.

We can directly note that, in the case of good reduction, II(p)

0 = k0[e0, e1, e2].
In the case of multiplicative reduction, i.e., f = 1, the relations are

II
(p)

d+1 : e0e1 − ζ̄d+1e1e0, e2e0 − ζ̄1−pd+1e0e2, e2e1 − ζ̄2−pd+1e1e2,

where d = −vp(jE). Hence the reduction is a quantum affine space.
When the reduction is additive we find the relations

II
(p)

d+2 : e0e1 − ζ̄d+2e1e0, e2e0 − ζ̄1−pd+2e0e2, e2e1 − ζ̄2−pd+2e1e2.

The possible values for d in the additive case are

d = 1, 2, 3, 5, 5− vp(jE), 7, 8, 9.

However, it will turn out that not all these are possible when the curve has a
K-rational p-torsion point.

6.2.3 p = 3

Due to possible wild ramification when p = 3, the results are more subtle.
Theorem IV.10.4 in [Sil94] gives the bound 2 ≤ f ≤ 5, with each value possible.
When f > 2, [Sil94, Table IV.4.1], shows that, when p = 3, d has the possibilities
d = 1, 3, 7, 9, corresponding to Kodaira types II, IV, IV∗ and II∗, respectively.

We refrain from writing out all possible algebras, simply writing II
(3)
f+d as

given by the relations

e0e1 − ζ̄f+de1e0, e2e0 − ζ̄−2f+de0e2, e2e1 − ζ̄−1f+de1e2,

with 3 ≤ f ≤ 5 and d ∈ {1, 3, 7, 9}. The case f = 2 was treated above.
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6.2.4 Multiplicative reduction

Now, when the reduction is multiplicative the number of components is d =
−vp(j(E)) > 1, corresponding to the Kodaira type Id.

For the two examples below we fix S and (a, b) and write θ = θ(a,b);S =∑p−1
0 θiβ

i, with θi ∈ L. I tried to find explicit curves with K-rational points
so that some choice of θ would be manageable, i.e., would be possible to write
down in a reasonable way, but did not succeed.

Example 6.1. Suppose that E has Kodaira type I2. Then

III2 :=
k(ζ̄3)〈e0, e1, e2〉(

e0e1 − ζ̄3e1e0, e2e0 − ζ̄1−p3 e0e2, e2e1 − ζ̄2−p3 e1e2

) .
The centre Z(III2) includes the algebra k(ζ̄3)[e30, e

3
1, e

3
2], so Spec

(
Z(III2)

)
, and

by convention, XIII2
, can be seen as an A3-fibration.

Assume given a z such that θ̄i is not zero. Put N̄i = (0, 0, θ̄i). From theorem
6.7 we see that

TNi = Ext1
III2

(N̄i, N̄
′) =

{
k if θ̄′ = ζ̄2−p3 θ̄i

0, otherwise,
,

where, of course, N̄′ = (0, 0, θ̄
′
) and Ni := {N̄i, N̄

′}. Hence N̄′ = N̄⊥i . Notice
that if p = 3, ζ̄3 = 1 so II

(3)

I2 = A3.

Example 6.2. For E of Kodaira type I5, we find

III5 =
k(ζ̄6)〈e0, e1, e2〉(

e0e1 − ζ̄6e1e0, e2e0 − ζ̄1−p3 e0e2, e2e1 + ζ̄2−p3 e1e2

) .
The slightly different relations here follow from p being an odd prime and ζ̄6 =
ζ̄2ζ̄3.

In this case the centre is quite complicated but it certainly includes the alge-
bra k(ζ̄6)[e60, e

6
1, e

6
2] (hence Spec

(
Z(III2)

)
and XIII2

can be seen as A3-fibrations
in this case also). With the same notation as in the previous example we find

TNi = Ext1
III5

(N̄i, N̄
′) =

{
k if θ̄′ = −ζ̄2−p3 θ̄i

0, otherwise,

following from theorem 6.7.

The case of additive reduction is more subtle as was alluded to above. The
possible number of components are 1 ≤ d ≤ 9 but it will turn out that not all
of these are possible.

6.2.5 Additive reduction

We will look at bit deeper into the case of additive reduction. The following
theorem is [KP17, Theorem 12].
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Theorem 6.8. Let E/K be an elliptic curve with additive reduction at qK | p.
Then

(i) E0(K) ' Ê(oK) as (topological) groups, and

(ii) if 6e(q) < p − 1, then E0(K) ' Znp , as Zp-modules. When 6e(q) ≥ p − 1,
we have E0(K) ' Znp × Z/p.

Here n is the degree of K/Qp.

Theorem 6.9. Let E/K be an elliptic curve with a K-rational p-torsion point
and e(q) = 1. Then E/K cannot have additive reduction at qK , unless p = 2, 3, 5
or 7.

Proof. By theorem 6.8 (ii), if e(q) = 1, then E0(K) ' Znp when p ≥ 11. Hence
the only possibilities to have p-torsion in the additive reduction case are when
p = 2, 3, 5, 7.

Let E/K be an elliptic curve with additive reduction at qK and with Weier-
strass equation

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (6.2)

In fact, [KP17, Lemma 9] shows that the coefficients can be chosen so that they
are all in the maximal ideal m ⊂ oK .

Recall that, for an elliptic curve E/K , there is an exact sequence

0 // E1(K) // E0(K)
red // Ēsm(k) // 0 ,

where E0(K) is the set of K-rational points on E reducing to the smooth locus
Ēsm on the reduced curve Ē and where E1(K) is the kernel of reduction. Also,
E1(K) ' Ê(oK), where Ê is the formal group of E. See [Sil86, Propositions 2.1
and 2.2, chapter VII] for details. Let E/K have additive reduction and let E/oK
be its minimal regular model. Then

Ē0(k) ' Ēsm(k),

where Ē0 is the connected component of the identity in the closed fibre, by
[Sil94, IV.9.2(c)]. Also, there is an exact sequence of group schemes

0 // E0 // E // Φ. (6.3)

From this sequence and [Sil94, IV.9.2(a,b)] follows the exact sequences

0 // E0(oK) // E(oK) // Φ(oK) // 0

0 // E0(K) // E(K) // Φ(K) // 0

E(K)/E0(K)
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and

0 // E0(oK)[p∞] // E(oK)[p∞] // Φ(oK)[p∞]

0 // E0(K)[p∞] // E(K)[p∞] // Φ(K)[p∞]
(
E(K)/E0(K)

)
[p∞].

In addition, [Sil94, IV.9.2(b)] gives that

Φ(K) = E(K)/E0(K) ' Ē0(k) = Φ(k).

The group Φ(k) is the group of components of Ē.
Now, table [Sil94, Table IV.4.1] shows that Φ(k)[p] = {0} if p > 3 and hence

E0(K)[p] ' E(K)[p]. Therefore, all K-rational p-torsion points must reduce to
non-singular points on Ē(k) = Ē(k). Theorem 6.8 now implies that, if p > 7,
E0(K) is p-torsion-free, and hence also E(K).

Let us begin by looking at the cases p = 5 or 7. Since E(K)[p] ' E0(K)[p],
the discussion in section 3.3.1 in [KP17] implies that

E(K)[p] ' Znp × Z/p, (with n = [K : Qp])

if and only if f(T ) := T − aT p has a non-trivial solution in k, where a =
3a4/5 (mod q) when p = 5 and a = 4a6/7 (mod q), when p = 7, and where a4,
a6 are the coefficients given by the Weierstrass model (6.2). See [KP17, Section
3.3.1] for the details. It is important to be aware that these congruences refer
only to the Weierstrass model (6.2) where the coefficients are in m. Incidentally,
the polynomial f(T ) is the reduction of the power series [p](T ) in the formal
group of E/K .

If a solution to the these congruences does not exist, E(K)[p] = Znp and
hence there are no non-trivial K-rational p-torsion points. The above comment
indicates that the number of curves with additive reduction with a K-rational
p-torsion point is quite rare for p = 5 and rarer still for p = 7. In fact, the
first curve where the curve has additive reduction with a non-trivial Q7-rational
point is 294b2 in Cremona’s table [Cre15]. The next curve after this is the
curve 490k2.

The following two examples show that existence and non-existence of rational
p-torsion points can occur for both p = 5 and p = 7 in the additive reduction
case. The computations are done with Sage [Sag20].

Example 6.3. Let E/Q5
be the elliptic curve given by the Weierstrass equation

y2 + xy + y = x3 + x2 + 22x− 9. (50b2)

This curve has bad additive reduction (of type II) and is 50b2 in Cremona’s
table [Cre15]. The Q5-rational 5-torsion points are{

∞, (1 : −5 : 1), (1 : 3 : 1), (9 : −37 : 1), (9 : 27 : 1)
}

and so E(Q5)[5] = E(Q)[5] ' Z/5. All these have non-singular reduction. On
the other hand, the curve 50a4 also has bad additive reduction (of type IV∗).
However, this time the only rational 5-torsion point is {∞} = {[0 : 1 : 0]}.
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Example 6.4. Now, let E/Q7
be the elliptic curve 49a3 given by the Weierstrass

equation
y2 + xy = x3 − x2 − 107x+ 552. (49a3)

This curve has bad additive reduction of type III∗. The only Q7-rational 7-
torsion points is {∞} = {[0 : 1 : 0]}. Looking now at the curve E′/Q7

y2 + xy + y = x3 − x2 + 918x+ 5289 (490k2)

of bad additive Kodaira type II, one finds that

E′(Q7)[7] = E′(Q)[7] =
{
∞, (−3 : −49 : 1), (−3 : 51 : 1), (17 : −169 : 1),

(17 : 151 : 1), (97 : −1049 : 1), (97 : 951 : 1)
}
,

all of non-singular reduction.

When p = 5 or 7, the conductor is f = 2 for type II and III. In the case
p = 7 the only possibility is d = 1 (Kodaira symbol II) and so, since all 3-rd
roots of unity are in F7,

II
(7)

II =
k〈e0, e1, e2〉(

e0e1 − ζ̄3e1e0, e2e0 − e0e2, e2e1 − ζ̄−23 e1e2

) .
When p = 5 we find the algebras

II
(5)

III =
k〈e0, e1, e2〉(

e0e1 − ζ̄4e1e0, e2e0 − e0e2, e2e1 + ζ̄4e1e2

) ,
where ζ̄4 ∈ F5, and

II
(5)

II =
k(ζ̄3)〈e0, e1, e2〉(

e0e1 − ζ̄3e1e0, e2e0 − ζ̄−13 e0e2, e2e1 − e1e2
) .

Note that, depending on the degree of k/F5, ζ̄3 may or may not be in k already.
The degree [k(ζ̄3) : k] is either 1 or 2.

In the case p = 3, the group Φ(k) = Φ(K) is not necessarily trivial. There-
fore, we cannot conclude from (6.3) that

E0(K)[3] ' E(K)[3].

In fact, this is false in general. Thanks to Chris Wuthrich for indicating the
following examples. Computations once again courtesy of Sage [Sag20].

Example 6.5. Let E/Q3
be the elliptic curve

y2 + y = x3 − 7 (27a1)

over Q3. Then
E(Q3)[3∞] ' Z/3

and only {∞} = {[0 : 1 : 0]} has good reduction. In fact, E(Q)[3] = E(Q3)[3] =
E(Q3)[3∞]. This curve has Kodaira type IV∗.
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Example 6.6. Now, let E/Q3
be Cremona’s curve 54b3:

y2 + xy + y = x3 − x2 − 14x+ 29. (54b3)

In this example
E(Q3)[3∞] ' Z/9

and three Q3-rational points have good reduction (incidentally, these are the
points of E(Q)[3]). The Kodaira symbol for 54b3 is IV.

The possibility for the p-torsion points to reduce into the singular locus is
measured by Φ(k) = Φ(K) = E(K)/E0(K) and when p = 3 the only possibility
is Φ(K) = Z/3, which corresponds to the Kodaira symbols IV and IV∗. The
reason for this is that E(K)[3]/E0(K)[3] is a subgroup of Φ(K) of order 3.
Hence 3 must be a divisor of the order of Φ(K). According to [Sil94, Table
IV.4.1] this corresponds to E(K)[3]/E0(K)[3] = E(K)/E0(K) = Z/3 and the
Kodaira symbols IV and IV∗.

Another possibility is that E(K)[3]/E0(K)[3] is trivial while E(K)/E0(K) =
(0) or E(K)/E0(K) = Z/2. In this case we get the symbols II and III. This
happens for instance for 54b1 (which is of type II) and 90b2 (which is of type
III). Note that E(K)[3]/E0(K)[3] and E(K)/E0(K) = (0) can both be trivial
without E having good reduction (when Ē is a cusp with only one component).

On the other hand, the Kodaira symbols I have found for the 3-torsion
reducing to the smooth locus, for curves over Q3, are II, III, IV, I∗0, I∗1, I∗2, I∗3
and I∗4. At the moment I’m not sure whether I∗n can appear for n ≥ 5 or not
(and, in that case, if there is an upper bound). This shouldn’t be too difficult
to prove or disprove.

Remark 6.8. It is important to remember that all the above claims are made
under the assumption that E has a K-rational 3-torsion point.

Summarising the additive case when p = 3:

Theorem 6.10. Suppose E/Q3
has additive reduction. The relations for II(3)

f+d

are
e0e1 − ζ̄f+de1e0, e2e0 − ζ̄−2f+de0e2, e2e1 − ζ̄−1f+de1e2

and the possibilities for d and f are (remember, 2 ≤ f ≤ 5):

II: d = 1, f > 2;

III: d = 2, f = 2;

IV: d = 3, f > 2;

I∗n: d = 5 + n, f = 2, and

IV∗: d = 7, f > 2.

Depending on d, f and [k : F3], ζ̄f+d may, or may not, be in k already.
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7 The θθ-elements

Now, fix S. We then get a function

θ−;S : E[p] −→ F, [a]P + [b]Q 7−→ θ = θ(a,b);S =

p−1∑
i=0

θiβ
i. (7.1)

This defines a one-dimensional étale L-rational point of order p− 1,

Nθ,0 =
{
Nj | 0 ≤ j ≤ p− 1

}
, Nj = (0, 0, θj),

on XIIf+d . We can define a mirror family N⊥θ,0 such that N̄⊥θ,0 = ζ2−pN̄θ,0.
Hence,

Proposition 7.1. The association (7.1) sets up a correspondence between E[p]
and one-dimensional étale L-rational points of order in XIIf+d . Each such étale
L-rational point Nθ,0 defines a unique mirror N̄⊥θ,0 on the special fibre XIIf+d ⊗
kw.

There is another way to use the correspondence (7.1). It is natural to say
that the IIf+d-module H := IIf+d/(H), where H := a0e0+a1e1+a2e2 ∈ IIf+d,
is a hyperplane in XIIf+d .

Proposition 7.2. The association θH−;S : E[p] −→ IIf+d,

[a]P + [b]Q 7−→
p−1∑
i=0

θiβ
i 7−→ H := θ0e0 + θ1e1 + θp−1e2. (7.2)

(recall e2 is actually ep−1) sets up a correspondence between E[p] and hyper-
planes in XIIf+d . Hence the function θ

H
−;S is a hyperplane arrangement in XIIf+d

defined by E[p].

Note that the restriction of θHE[p];S to the central subscheme defines an actual
hyperplane arrangement in Spec(Z(IIf+d)).

Remark 7.1. The above constructions are obviously not restricted to the par-
ticular choice w = f + d.

As a third, and final, construction involving the θ-elements we present a way
to construct elements in the Brauer group of L[ζf+d].

As mentioned in remark (6.5) we can view IIw as the glueing of three quan-
tum planes

Qi,j := oL[ζf+d]〈ei, ej〉
/

(eiej − ζaf+dejei), 0 ≤ i < j ≤ 2,

where a = 1, p− 1 or p− 2.
Given a hyperplane H = θ0e0 + θ1e1 + θp−1e2 we can form the following

quotients

Qθ
i,j :=

Qi,j(
ef+di = θi, e

f+d
j = θj

) , 0 ≤ i < j ≤ 2.

If θiθj 6= 0, Qθ
i,j defines an Azumaya algebra over oL[ζf+d], defining an element

in Br(oL[ζf+d]). Consequently the generic fibre is a central simple algebra and
hence defines an element in Br(L[ζf+d]). By the functoriality of Br there is a
natural morphism Br(oL[ζf+d])→ Br(L[ζf+d]).
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Proposition 7.3. The association θBr
−;S : E[p] −→ Br(L[ζf+d]),

[a]P + [b]Q 7−→
p−1∑
l=0

θlβ
l 7−→ Qθ

i,j , 0 ≤ i < j ≤ 2, θiθj 6= 0, (7.3)

sets up a correspondence between E[p] and elements in Br(L[ζf+d]), and by
restriction to a (possibly trivial) element in Br(L).

The above correspondences (7.1), (7.2) and (7.3) might deserve some further
study.

Remark 7.2. If f + d = 2 the algebras Qθ
i,j , under the condition θiθj 6= 0, are

all quaternion algebras. This can only happen when E has Kodaira symbol I1,
i.e., when Ē= P1.
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